blakeblackshear.frigate/frigate/video.py
2020-09-17 07:37:27 -05:00

367 lines
14 KiB
Python
Executable File

import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import pyarrow.plasma as plasma
import multiprocessing as mp
import subprocess as sp
import numpy as np
import copy
import itertools
import json
import base64
from typing import Dict, List
from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, PlasmaFrameManager
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
def filtered(obj, objects_to_track, object_filters, mask=None):
object_name = obj[0]
if not object_name in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.get('min_score', 0) > obj[1]:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if (not mask is None) and (mask[y_location][x_location] == 0):
return True
return False
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, take_frame: int, fps:EventsPerSecond, skipped_fps: EventsPerSecond,
stop_event: mp.Event, detection_frame: mp.Value, current_frame: mp.Value):
frame_num = 0
last_frame = 0
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
skipped_fps.start()
while True:
if stop_event.is_set():
print(f"{camera_name}: stop event set. exiting capture thread...")
break
frame_bytes = ffmpeg_process.stdout.read(frame_size)
current_frame.value = datetime.datetime.now().timestamp()
if len(frame_bytes) < frame_size:
print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
if ffmpeg_process.poll() != None:
print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
break
else:
continue
fps.update()
frame_num += 1
if (frame_num % take_frame) != 0:
skipped_fps.update()
continue
# if the detection process is more than 1 second behind, skip this frame
if detection_frame.value > 0.0 and (last_frame - detection_frame.value) > 1:
skipped_fps.update()
continue
# put the frame in the frame manager
frame_manager.put(f"{camera_name}{current_frame.value}",
np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape)
)
# add to the queue
frame_queue.put(current_frame.value)
last_frame = current_frame.value
class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame, stop_event):
threading.Thread.__init__(self)
self.name = name
self.frame_shape = frame_shape
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
self.frame_queue = frame_queue
self.take_frame = take_frame
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.plasma_client = PlasmaFrameManager(stop_event)
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
self.detection_frame = detection_frame
self.stop_event = stop_event
def run(self):
self.skipped_fps.start()
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.plasma_client, self.frame_queue, self.take_frame,
self.fps, self.skipped_fps, self.stop_event, self.detection_frame, self.current_frame)
def track_camera(name, config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event):
print(f"Starting process for {name}: {os.getpid()}")
listen()
detection_frame.value = 0.0
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
objects_to_track = camera_objects_config.get('track', [])
object_filters = camera_objects_config.get('filters', {})
# load in the mask for object detection
if 'mask' in config:
if config['mask'].startswith('base64,'):
img = base64.b64decode(config['mask'][7:])
npimg = np.fromstring(img, dtype=np.uint8)
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
elif config['mask'].startswith('poly,'):
points = config['mask'].split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
cv2.fillPoly(mask, pts=[contour], color=(0))
else:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None or mask.size == 0:
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_tracker = ObjectTracker(10)
plasma_client = PlasmaFrameManager()
process_frames(name, frame_queue, frame_shape, plasma_client, motion_detector, object_detector,
object_tracker, detected_objects_queue, fps, detection_fps, detection_frame, objects_to_track, object_filters, mask, stop_event)
print(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, fps: mp.Value, detection_fps: mp.Value, current_frame_time: mp.Value,
objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
exit_on_empty: bool = False):
fps_tracker = EventsPerSecond()
fps_tracker.start()
while True:
if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
print(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
except queue.Empty:
continue
current_frame_time.value = frame_time
frame = frame_manager.get(f"{camera_name}{frame_time}")
if frame is None:
print(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
# look for motion
motion_boxes = motion_detector.detect(frame)
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions]
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# add to the queue
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
detection_fps.value = object_detector.fps.eps()