blakeblackshear.frigate/frigate/object_processing.py
Nicolas Mowen 8ac4b001a2
Various fixes (#14410)
* Fix access

* Reorganize tracked object for imports

* Separate out rockchip build

* Formatting

* Use original ffmpeg build

* Fix build

* Update default search type value
2024-10-17 11:02:27 -05:00

963 lines
37 KiB
Python

import datetime
import json
import logging
import os
import queue
import threading
from collections import Counter, defaultdict
from multiprocessing.synchronize import Event as MpEvent
from typing import Callable
import cv2
import numpy as np
from frigate.comms.detections_updater import DetectionPublisher, DetectionTypeEnum
from frigate.comms.dispatcher import Dispatcher
from frigate.comms.events_updater import EventEndSubscriber, EventUpdatePublisher
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import (
FrigateConfig,
MqttConfig,
RecordConfig,
SnapshotsConfig,
ZoomingModeEnum,
)
from frigate.const import CLIPS_DIR, UPDATE_CAMERA_ACTIVITY
from frigate.events.types import EventStateEnum, EventTypeEnum
from frigate.ptz.autotrack import PtzAutoTrackerThread
from frigate.track.tracked_object import TrackedObject
from frigate.util.image import (
SharedMemoryFrameManager,
draw_box_with_label,
draw_timestamp,
is_better_thumbnail,
is_label_printable,
)
logger = logging.getLogger(__name__)
# Maintains the state of a camera
class CameraState:
def __init__(
self,
name,
config: FrigateConfig,
frame_manager: SharedMemoryFrameManager,
ptz_autotracker_thread: PtzAutoTrackerThread,
):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects: dict[str, TrackedObject] = {}
self.object_counts = defaultdict(int)
self.active_object_counts = defaultdict(int)
self.tracked_objects: dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(list)
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.motion_boxes = []
self.regions = []
self.previous_frame_id = None
self.callbacks = defaultdict(list)
self.ptz_autotracker_thread = ptz_autotracker_thread
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = {k: v.to_dict() for k, v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get("mask"):
mask_overlay = np.where(self.camera_config.motion.mask == [0])
frame_copy[mask_overlay] = [0, 0, 0]
if draw_options.get("bounding_boxes"):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
if obj["frame_time"] == frame_time:
if obj["stationary"]:
color = (220, 220, 220)
thickness = 1
else:
thickness = 2
color = self.config.model.colormap[obj["label"]]
else:
thickness = 1
color = (255, 0, 0)
# draw thicker box around ptz autotracked object
if (
self.camera_config.onvif.autotracking.enabled
and self.ptz_autotracker_thread.ptz_autotracker.autotracker_init[
self.name
]
and self.ptz_autotracker_thread.ptz_autotracker.tracked_object[
self.name
]
is not None
and obj["id"]
== self.ptz_autotracker_thread.ptz_autotracker.tracked_object[
self.name
].obj_data["id"]
and obj["frame_time"] == frame_time
):
thickness = 5
color = self.config.model.colormap[obj["label"]]
# debug autotracking zooming - show the zoom factor box
if (
self.camera_config.onvif.autotracking.zooming
!= ZoomingModeEnum.disabled
):
max_target_box = self.ptz_autotracker_thread.ptz_autotracker.tracked_object_metrics[
self.name
]["max_target_box"]
side_length = max_target_box * (
max(
self.camera_config.detect.width,
self.camera_config.detect.height,
)
)
centroid_x = (obj["box"][0] + obj["box"][2]) // 2
centroid_y = (obj["box"][1] + obj["box"][3]) // 2
top_left = (
int(centroid_x - side_length // 2),
int(centroid_y - side_length // 2),
)
bottom_right = (
int(centroid_x + side_length // 2),
int(centroid_y + side_length // 2),
)
cv2.rectangle(
frame_copy,
top_left,
bottom_right,
(255, 255, 0),
2,
)
# draw the bounding boxes on the frame
box = obj["box"]
text = (
obj["label"]
if (
not obj.get("sub_label")
or not is_label_printable(obj["sub_label"][0])
)
else obj["sub_label"][0]
)
draw_box_with_label(
frame_copy,
box[0],
box[1],
box[2],
box[3],
text,
f"{obj['score']:.0%} {int(obj['area'])}",
thickness=thickness,
color=color,
)
# draw any attributes
for attribute in obj["current_attributes"]:
box = attribute["box"]
draw_box_with_label(
frame_copy,
box[0],
box[1],
box[2],
box[3],
attribute["label"],
f"{attribute['score']:.0%}",
thickness=thickness,
color=color,
)
if draw_options.get("regions"):
for region in regions:
cv2.rectangle(
frame_copy,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
if draw_options.get("zones"):
for name, zone in self.camera_config.zones.items():
thickness = (
8
if any(
name in obj["current_zones"] for obj in tracked_objects.values()
)
else 2
)
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get("motion_boxes"):
for m_box in motion_boxes:
cv2.rectangle(
frame_copy,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
if draw_options.get("timestamp"):
color = self.camera_config.timestamp_style.color
draw_timestamp(
frame_copy,
frame_time,
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.blue, color.green, color.red),
position=self.camera_config.timestamp_style.position,
)
return frame_copy
def finished(self, obj_id):
del self.tracked_objects[obj_id]
def on(self, event_type: str, callback: Callable[[dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, current_detections, motion_boxes, regions):
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(
frame_id, self.camera_config.frame_shape_yuv
)
if current_frame is None:
logger.debug(f"Failed to get frame {frame_id} from SHM")
tracked_objects = self.tracked_objects.copy()
current_ids = set(current_detections.keys())
previous_ids = set(tracked_objects.keys())
removed_ids = previous_ids.difference(current_ids)
new_ids = current_ids.difference(previous_ids)
updated_ids = current_ids.intersection(previous_ids)
for id in new_ids:
new_obj = tracked_objects[id] = TrackedObject(
self.config.model,
self.camera_config,
self.frame_cache,
current_detections[id],
)
# call event handlers
for c in self.callbacks["start"]:
c(self.name, new_obj, frame_time)
for id in updated_ids:
updated_obj = tracked_objects[id]
thumb_update, significant_update, autotracker_update = updated_obj.update(
frame_time, current_detections[id], current_frame is not None
)
if autotracker_update or significant_update:
for c in self.callbacks["autotrack"]:
c(self.name, updated_obj, frame_time)
if thumb_update and current_frame is not None:
# ensure this frame is stored in the cache
if (
updated_obj.thumbnail_data["frame_time"] == frame_time
and frame_time not in self.frame_cache
):
self.frame_cache[frame_time] = np.copy(current_frame)
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last thumb update
# and the last update is greater than the last publish or
# the object has changed significantly
if (
frame_time - updated_obj.last_published > 5
and updated_obj.last_updated > updated_obj.last_published
) or significant_update:
# call event handlers
for c in self.callbacks["update"]:
c(self.name, updated_obj, frame_time)
updated_obj.last_published = frame_time
for id in removed_ids:
# publish events to mqtt
removed_obj = tracked_objects[id]
if "end_time" not in removed_obj.obj_data:
removed_obj.obj_data["end_time"] = frame_time
for c in self.callbacks["end"]:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
camera_activity: dict[str, list[any]] = {
"motion": len(motion_boxes) > 0,
"objects": [],
}
for obj in tracked_objects.values():
object_type = obj.obj_data["label"]
active = obj.is_active()
if not obj.false_positive:
label = object_type
sub_label = None
if obj.obj_data.get("sub_label"):
if (
obj.obj_data.get("sub_label")[0]
in self.config.model.all_attributes
):
label = obj.obj_data["sub_label"][0]
else:
label = f"{object_type}-verified"
sub_label = obj.obj_data["sub_label"][0]
camera_activity["objects"].append(
{
"id": obj.obj_data["id"],
"label": label,
"stationary": not active,
"area": obj.obj_data["area"],
"ratio": obj.obj_data["ratio"],
"score": obj.obj_data["score"],
"sub_label": sub_label,
}
)
# if we don't have access to the current frame or
# if the object's thumbnail is not from the current frame, skip
if (
current_frame is None
or obj.false_positive
or obj.thumbnail_data["frame_time"] != frame_time
):
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if (
is_better_thumbnail(
object_type,
current_best.thumbnail_data,
obj.thumbnail_data,
self.camera_config.frame_shape,
)
or (now - current_best.thumbnail_data["frame_time"])
> self.camera_config.best_image_timeout
):
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_time)
else:
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_time)
for c in self.callbacks["camera_activity"]:
c(self.name, camera_activity)
# update overall camera state for each object type
obj_counter = Counter(
obj.obj_data["label"]
for obj in tracked_objects.values()
if not obj.false_positive
)
active_obj_counter = Counter(
obj.obj_data["label"]
for obj in tracked_objects.values()
if not obj.false_positive and obj.active
)
# keep track of all labels detected for this camera
total_label_count = 0
total_active_label_count = 0
# report on all detected objects
for obj_name, count in obj_counter.items():
total_label_count += count
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks["object_status"]:
c(self.name, obj_name, count)
# update the active count on all detected objects
# To ensure we emit 0's if all objects are stationary, we need to loop
# over the set of all objects, not just active ones.
for obj_name in set(obj_counter):
count = active_obj_counter[obj_name]
total_active_label_count += count
if count != self.active_object_counts[obj_name]:
self.active_object_counts[obj_name] = count
for c in self.callbacks["active_object_status"]:
c(self.name, obj_name, count)
# publish for all labels detected for this camera
if total_label_count != self.object_counts.get("all"):
self.object_counts["all"] = total_label_count
for c in self.callbacks["object_status"]:
c(self.name, "all", total_label_count)
# publish active label counts for this camera
if total_active_label_count != self.active_object_counts.get("all"):
self.active_object_counts["all"] = total_active_label_count
for c in self.callbacks["active_object_status"]:
c(self.name, "all", total_active_label_count)
# expire any objects that are >0 and no longer detected
expired_objects = [
obj_name
for obj_name, count in self.object_counts.items()
if count > 0 and obj_name not in obj_counter
]
for obj_name in expired_objects:
# Ignore the artificial all label
if obj_name == "all":
continue
self.object_counts[obj_name] = 0
for c in self.callbacks["object_status"]:
c(self.name, obj_name, 0)
# Only publish if the object was previously active.
if self.active_object_counts[obj_name] > 0:
for c in self.callbacks["active_object_status"]:
c(self.name, obj_name, 0)
self.active_object_counts[obj_name] = 0
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = {
obj.thumbnail_data["frame_time"]
for obj in tracked_objects.values()
if not obj.false_positive and obj.thumbnail_data is not None
}
current_best_frames = {
obj.thumbnail_data["frame_time"] for obj in self.best_objects.values()
}
thumb_frames_to_delete = [
t
for t in self.frame_cache.keys()
if t not in current_thumb_frames and t not in current_best_frames
]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self.tracked_objects = tracked_objects
self.motion_boxes = motion_boxes
self.regions = regions
if current_frame is not None:
self.current_frame_time = frame_time
self._current_frame = current_frame
if self.previous_frame_id is not None:
self.frame_manager.close(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(
self,
config: FrigateConfig,
dispatcher: Dispatcher,
tracked_objects_queue,
ptz_autotracker_thread,
stop_event,
):
super().__init__(name="detected_frames_processor")
self.config = config
self.dispatcher = dispatcher
self.tracked_objects_queue = tracked_objects_queue
self.stop_event: MpEvent = stop_event
self.camera_states: dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
self.last_motion_detected: dict[str, float] = {}
self.ptz_autotracker_thread = ptz_autotracker_thread
self.requestor = InterProcessRequestor()
self.detection_publisher = DetectionPublisher(DetectionTypeEnum.video)
self.event_sender = EventUpdatePublisher()
self.event_end_subscriber = EventEndSubscriber()
self.camera_activity: dict[str, dict[str, any]] = {}
# {
# 'zone_name': {
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(dict))
self.active_zone_data = defaultdict(lambda: defaultdict(dict))
def start(camera, obj: TrackedObject, current_frame_time):
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.start,
camera,
obj.to_dict(),
)
)
def update(camera, obj: TrackedObject, current_frame_time):
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
after = obj.to_dict()
message = {
"before": obj.previous,
"after": after,
"type": "new" if obj.previous["false_positive"] else "update",
}
self.dispatcher.publish("events", json.dumps(message), retain=False)
obj.previous = after
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.update,
camera,
obj.to_dict(include_thumbnail=True),
)
)
def autotrack(camera, obj: TrackedObject, current_frame_time):
self.ptz_autotracker_thread.ptz_autotracker.autotrack_object(camera, obj)
def end(camera, obj: TrackedObject, current_frame_time):
# populate has_snapshot
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
# write the snapshot to disk
if obj.has_snapshot:
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height,
quality=snapshot_config.quality,
)
if jpg_bytes is None:
logger.warning(f"Unable to save snapshot for {obj.obj_data['id']}.")
else:
with open(
os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"),
"wb",
) as j:
j.write(jpg_bytes)
# write clean snapshot if enabled
if snapshot_config.clean_copy:
png_bytes = obj.get_clean_png()
if png_bytes is None:
logger.warning(
f"Unable to save clean snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"{camera}-{obj.obj_data['id']}-clean.png",
),
"wb",
) as p:
p.write(png_bytes)
if not obj.false_positive:
message = {
"before": obj.previous,
"after": obj.to_dict(),
"type": "end",
}
self.dispatcher.publish("events", json.dumps(message), retain=False)
self.ptz_autotracker_thread.ptz_autotracker.end_object(camera, obj)
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.end,
camera,
obj.to_dict(include_thumbnail=True),
)
)
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config: MqttConfig = self.config.cameras[camera].mqtt
if mqtt_config.enabled and self.should_mqtt_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
height=mqtt_config.height,
quality=mqtt_config.quality,
)
if jpg_bytes is None:
logger.warning(
f"Unable to send mqtt snapshot for {obj.obj_data['id']}."
)
else:
self.dispatcher.publish(
f"{camera}/{obj.obj_data['label']}/snapshot",
jpg_bytes,
retain=True,
)
def object_status(camera, object_name, status):
self.dispatcher.publish(f"{camera}/{object_name}", status, retain=False)
def active_object_status(camera, object_name, status):
self.dispatcher.publish(
f"{camera}/{object_name}/active", status, retain=False
)
def camera_activity(camera, activity):
last_activity = self.camera_activity.get(camera)
if not last_activity or activity != last_activity:
self.camera_activity[camera] = activity
self.requestor.send_data(UPDATE_CAMERA_ACTIVITY, self.camera_activity)
for camera in self.config.cameras.keys():
camera_state = CameraState(
camera, self.config, self.frame_manager, self.ptz_autotracker_thread
)
camera_state.on("start", start)
camera_state.on("autotrack", autotrack)
camera_state.on("update", update)
camera_state.on("end", end)
camera_state.on("snapshot", snapshot)
camera_state.on("object_status", object_status)
camera_state.on("active_object_status", active_object_status)
camera_state.on("camera_activity", camera_activity)
self.camera_states[camera] = camera_state
def should_save_snapshot(self, camera, obj: TrackedObject):
if obj.false_positive:
return False
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
if not snapshot_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = snapshot_config.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
logger.debug(
f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
def should_retain_recording(self, camera: str, obj: TrackedObject):
if obj.false_positive:
return False
record_config: RecordConfig = self.config.cameras[camera].record
# Recording is disabled
if not record_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# If the object is not considered an alert or detection
review_config = self.config.cameras[camera].review
if not (
(
obj.obj_data["label"] in review_config.alerts.labels
and (
not review_config.alerts.required_zones
or set(obj.entered_zones) & set(review_config.alerts.required_zones)
)
)
or (
(
not review_config.detections.labels
or obj.obj_data["label"] in review_config.detections.labels
)
and (
not review_config.detections.required_zones
or set(obj.entered_zones) & set(review_config.alerts.required_zones)
)
)
):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not qualify as an alert or detection"
)
return False
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
logger.debug(
f"Not sending mqtt for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
def update_mqtt_motion(self, camera, frame_time, motion_boxes):
# publish if motion is currently being detected
if motion_boxes:
# only send ON if motion isn't already active
if self.last_motion_detected.get(camera, 0) == 0:
self.dispatcher.publish(
f"{camera}/motion",
"ON",
retain=False,
)
# always updated latest motion
self.last_motion_detected[camera] = frame_time
elif self.last_motion_detected.get(camera, 0) > 0:
mqtt_delay = self.config.cameras[camera].motion.mqtt_off_delay
# If no motion, make sure the off_delay has passed
if frame_time - self.last_motion_detected.get(camera, 0) >= mqtt_delay:
self.dispatcher.publish(
f"{camera}/motion",
"OFF",
retain=False,
)
# reset the last_motion so redundant `off` commands aren't sent
self.last_motion_detected[camera] = 0
def get_best(self, camera, label):
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best["frame"] = camera_state.frame_cache.get(
best_obj.thumbnail_data["frame_time"]
)
return best
else:
return {}
def get_current_frame(self, camera, draw_options={}):
if camera == "birdseye":
return self.frame_manager.get(
"birdseye",
(self.config.birdseye.height * 3 // 2, self.config.birdseye.width),
)
return self.camera_states[camera].get_current_frame(draw_options)
def get_current_frame_time(self, camera) -> int:
"""Returns the latest frame time for a given camera."""
return self.camera_states[camera].current_frame_time
def run(self):
while not self.stop_event.is_set():
try:
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.tracked_objects_queue.get(True, 1)
except queue.Empty:
continue
camera_state = self.camera_states[camera]
camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
self.update_mqtt_motion(camera, frame_time, motion_boxes)
tracked_objects = [
o.to_dict() for o in camera_state.tracked_objects.values()
]
# publish info on this frame
self.detection_publisher.publish(
(
camera,
frame_time,
tracked_objects,
motion_boxes,
regions,
)
)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter(
obj.obj_data["label"]
for obj in camera_state.tracked_objects.values()
if zone in obj.current_zones and not obj.false_positive
)
active_obj_counter = Counter(
obj.obj_data["label"]
for obj in camera_state.tracked_objects.values()
if (
zone in obj.current_zones
and not obj.false_positive
and obj.active
)
)
total_label_count = 0
total_active_label_count = 0
# update counts and publish status
for label in set(self.zone_data[zone].keys()) | set(obj_counter.keys()):
# Ignore the artificial all label
if label == "all":
continue
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
active_zone_label = self.active_zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
current_active_count = sum(active_zone_label.values())
zone_label[camera] = (
obj_counter[label] if label in obj_counter else 0
)
active_zone_label[camera] = (
active_obj_counter[label]
if label in active_obj_counter
else 0
)
new_count = sum(zone_label.values())
new_active_count = sum(active_zone_label.values())
if new_count != current_count:
self.dispatcher.publish(
f"{zone}/{label}",
new_count,
retain=False,
)
if new_active_count != current_active_count:
self.dispatcher.publish(
f"{zone}/{label}/active",
new_active_count,
retain=False,
)
# Set the count for the /zone/all topic.
total_label_count += new_count
total_active_label_count += new_active_count
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
active_zone_label[camera] = active_obj_counter[label]
self.dispatcher.publish(
f"{zone}/{label}",
obj_counter[label],
retain=False,
)
self.dispatcher.publish(
f"{zone}/{label}/active",
active_obj_counter[label],
retain=False,
)
# Set the count for the /zone/all topic.
total_label_count += obj_counter[label]
total_active_label_count += active_obj_counter[label]
# if we have previously published a count for this zone all labels
zone_label = self.zone_data[zone]["all"]
active_zone_label = self.active_zone_data[zone]["all"]
if camera in zone_label:
current_count = sum(zone_label.values())
current_active_count = sum(active_zone_label.values())
zone_label[camera] = total_label_count
active_zone_label[camera] = total_active_label_count
new_count = sum(zone_label.values())
new_active_count = sum(active_zone_label.values())
if new_count != current_count:
self.dispatcher.publish(
f"{zone}/all",
new_count,
retain=False,
)
if new_active_count != current_active_count:
self.dispatcher.publish(
f"{zone}/all/active",
new_active_count,
retain=False,
)
# if this is a new zone all label for this camera
else:
zone_label[camera] = total_label_count
active_zone_label[camera] = total_active_label_count
self.dispatcher.publish(
f"{zone}/all",
total_label_count,
retain=False,
)
self.dispatcher.publish(
f"{zone}/all/active",
total_active_label_count,
retain=False,
)
# cleanup event finished queue
while not self.stop_event.is_set():
update = self.event_end_subscriber.check_for_update(timeout=0.01)
if not update:
break
event_id, camera, _ = update
self.camera_states[camera].finished(event_id)
self.requestor.stop()
self.detection_publisher.stop()
self.event_sender.stop()
self.event_end_subscriber.stop()
logger.info("Exiting object processor...")