mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
87 lines
3.8 KiB
Python
87 lines
3.8 KiB
Python
import logging
|
|
|
|
import sys
|
|
import os
|
|
import numpy as np
|
|
import ctypes
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
import glob
|
|
import cv2
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
|
|
|
import frigate.detectors.yolo_utils as yolo_utils
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "rocm"
|
|
|
|
class ROCmDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
conserve_cpu: bool = Field(default=True, title="Conserve CPU at the expense of latency (and reduced max throughput)")
|
|
|
|
class ROCmDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: ROCmDetectorConfig):
|
|
try:
|
|
sys.path.append("/opt/rocm/lib")
|
|
import migraphx
|
|
|
|
logger.info(f"AMD/ROCm: loaded migraphx module")
|
|
except ModuleNotFoundError:
|
|
logger.error(
|
|
"AMD/ROCm: module loading failed, missing ROCm environment?"
|
|
)
|
|
raise
|
|
|
|
if detector_config.conserve_cpu:
|
|
logger.info(f"AMD/ROCm: switching HIP to blocking mode to conserve CPU")
|
|
ctypes.CDLL('/opt/rocm/lib/libamdhip64.so').hipSetDeviceFlags(4)
|
|
assert detector_config.model.model_type == 'yolov8', "AMD/ROCm: detector_config.model.model_type: only yolov8 supported"
|
|
assert detector_config.model.input_tensor == 'nhwc', "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported"
|
|
if detector_config.model.input_pixel_format != 'rgb':
|
|
logger.warn("AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!")
|
|
|
|
assert detector_config.model.path is not None, "No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ', '.join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
|
|
|
path = detector_config.model.path
|
|
mxr_path = os.path.splitext(path)[0] + '.mxr'
|
|
if path.endswith('.mxr'):
|
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
|
self.model = migraphx.load(mxr_path)
|
|
elif os.path.exists(mxr_path):
|
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
|
self.model = migraphx.load(mxr_path)
|
|
else:
|
|
logger.info(f"AMD/ROCm: loading model from {path}")
|
|
if path.endswith('.onnx'):
|
|
self.model = migraphx.parse_onnx(path)
|
|
elif path.endswith('.tf') or path.endswith('.tf2') or path.endswith('.tflite'):
|
|
# untested
|
|
self.model = migraphx.parse_tf(path)
|
|
else:
|
|
raise Exception(f"AMD/ROCm: unkown model format {path}")
|
|
logger.info(f"AMD/ROCm: compiling the model")
|
|
self.model.compile(migraphx.get_target('gpu'), offload_copy=True, fast_math=True)
|
|
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
|
|
os.makedirs("/config/model_cache/rocm", exist_ok=True)
|
|
migraphx.save(self.model, mxr_path)
|
|
logger.info(f"AMD/ROCm: model loaded")
|
|
|
|
def detect_raw(self, tensor_input):
|
|
model_input_name = self.model.get_parameter_names()[0];
|
|
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
|
|
|
|
tensor_input = yolo_utils.yolov8_preprocess(tensor_input, model_input_shape)
|
|
|
|
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
|
|
|
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
|
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
|
|
|
|
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
|
|
|