mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
142 lines
5.6 KiB
Python
142 lines
5.6 KiB
Python
import os
|
|
import datetime
|
|
import hashlib
|
|
import multiprocessing as mp
|
|
import numpy as np
|
|
import pyarrow.plasma as plasma
|
|
import tflite_runtime.interpreter as tflite
|
|
from tflite_runtime.interpreter import load_delegate
|
|
from frigate.util import EventsPerSecond, listen
|
|
|
|
def load_labels(path, encoding='utf-8'):
|
|
"""Loads labels from file (with or without index numbers).
|
|
Args:
|
|
path: path to label file.
|
|
encoding: label file encoding.
|
|
Returns:
|
|
Dictionary mapping indices to labels.
|
|
"""
|
|
with open(path, 'r', encoding=encoding) as f:
|
|
lines = f.readlines()
|
|
if not lines:
|
|
return {}
|
|
|
|
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
|
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
|
return {int(index): label.strip() for index, label in pairs}
|
|
else:
|
|
return {index: line.strip() for index, line in enumerate(lines)}
|
|
|
|
class ObjectDetector():
|
|
def __init__(self):
|
|
edge_tpu_delegate = None
|
|
try:
|
|
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
|
|
except ValueError:
|
|
print("No EdgeTPU detected. Falling back to CPU.")
|
|
|
|
if edge_tpu_delegate is None:
|
|
self.interpreter = tflite.Interpreter(
|
|
model_path='/cpu_model.tflite')
|
|
else:
|
|
self.interpreter = tflite.Interpreter(
|
|
model_path='/edgetpu_model.tflite',
|
|
experimental_delegates=[edge_tpu_delegate])
|
|
|
|
self.interpreter.allocate_tensors()
|
|
|
|
self.tensor_input_details = self.interpreter.get_input_details()
|
|
self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
|
def detect_raw(self, tensor_input):
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
|
self.interpreter.invoke()
|
|
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
|
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
|
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
|
|
|
detections = np.zeros((20,6), np.float32)
|
|
for i, score in enumerate(scores):
|
|
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
|
|
|
return detections
|
|
|
|
def run_detector(detection_queue, avg_speed, start):
|
|
print(f"Starting detection process: {os.getpid()}")
|
|
listen()
|
|
plasma_client = plasma.connect("/tmp/plasma")
|
|
object_detector = ObjectDetector()
|
|
|
|
while True:
|
|
object_id_str = detection_queue.get()
|
|
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
|
object_id = plasma.ObjectID(object_id_hash.digest())
|
|
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
|
|
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
|
|
|
if input_frame is plasma.ObjectNotAvailable:
|
|
continue
|
|
|
|
# detect and put the output in the plasma store
|
|
start.value = datetime.datetime.now().timestamp()
|
|
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
|
|
duration = datetime.datetime.now().timestamp()-start.value
|
|
start.value = 0.0
|
|
|
|
avg_speed.value = (avg_speed.value*9 + duration)/10
|
|
|
|
class EdgeTPUProcess():
|
|
def __init__(self):
|
|
self.detection_queue = mp.SimpleQueue()
|
|
self.avg_inference_speed = mp.Value('d', 0.01)
|
|
self.detection_start = mp.Value('d', 0.0)
|
|
self.detect_process = None
|
|
self.start_or_restart()
|
|
|
|
def start_or_restart(self):
|
|
self.detection_start.value = 0.0
|
|
if (not self.detect_process is None) and self.detect_process.is_alive():
|
|
self.detect_process.terminate()
|
|
print("Waiting for detection process to exit gracefully...")
|
|
self.detect_process.join(timeout=30)
|
|
if self.detect_process.exitcode is None:
|
|
print("Detection process didnt exit. Force killing...")
|
|
self.detect_process.kill()
|
|
self.detect_process.join()
|
|
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
|
|
self.detect_process.daemon = True
|
|
self.detect_process.start()
|
|
|
|
class RemoteObjectDetector():
|
|
def __init__(self, name, labels, detection_queue):
|
|
self.labels = load_labels(labels)
|
|
self.name = name
|
|
self.fps = EventsPerSecond()
|
|
self.plasma_client = plasma.connect("/tmp/plasma")
|
|
self.detection_queue = detection_queue
|
|
|
|
def detect(self, tensor_input, threshold=.4):
|
|
detections = []
|
|
|
|
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
|
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
|
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
|
self.plasma_client.put(tensor_input, object_id_frame)
|
|
self.detection_queue.put(now)
|
|
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
|
|
|
|
if raw_detections is plasma.ObjectNotAvailable:
|
|
self.plasma_client.delete([object_id_frame])
|
|
return detections
|
|
|
|
for d in raw_detections:
|
|
if d[1] < threshold:
|
|
break
|
|
detections.append((
|
|
self.labels[int(d[0])],
|
|
float(d[1]),
|
|
(d[2], d[3], d[4], d[5])
|
|
))
|
|
self.plasma_client.delete([object_id_frame, object_id_detections])
|
|
self.fps.update()
|
|
return detections |