mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-02 00:07:11 +01:00
410 lines
15 KiB
Python
410 lines
15 KiB
Python
import logging
|
|
import random
|
|
import string
|
|
|
|
import numpy as np
|
|
from norfair import (
|
|
Detection,
|
|
Drawable,
|
|
OptimizedKalmanFilterFactory,
|
|
Tracker,
|
|
draw_boxes,
|
|
)
|
|
from norfair.drawing.drawer import Drawer
|
|
|
|
from frigate.config import CameraConfig
|
|
from frigate.ptz.autotrack import PtzMotionEstimator
|
|
from frigate.track import ObjectTracker
|
|
from frigate.types import PTZMetricsTypes
|
|
from frigate.util.image import intersection_over_union
|
|
from frigate.util.object import average_boxes, median_of_boxes
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
THRESHOLD_KNOWN_ACTIVE_IOU = 0.2
|
|
THRESHOLD_STATIONARY_CHECK_IOU = 0.6
|
|
THRESHOLD_ACTIVE_CHECK_IOU = 0.9
|
|
MAX_STATIONARY_HISTORY = 10
|
|
|
|
|
|
# Normalizes distance from estimate relative to object size
|
|
# Other ideas:
|
|
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
|
|
# - could be variable based on time since last_detection
|
|
# - include estimated velocity in the distance (car driving by of a parked car)
|
|
# - include some visual similarity factor in the distance for occlusions
|
|
def distance(detection: np.array, estimate: np.array) -> float:
|
|
# ultimately, this should try and estimate distance in 3-dimensional space
|
|
# consider change in location, width, and height
|
|
|
|
estimate_dim = np.diff(estimate, axis=0).flatten()
|
|
detection_dim = np.diff(detection, axis=0).flatten()
|
|
|
|
# get bottom center positions
|
|
detection_position = np.array(
|
|
[np.average(detection[:, 0]), np.max(detection[:, 1])]
|
|
)
|
|
estimate_position = np.array([np.average(estimate[:, 0]), np.max(estimate[:, 1])])
|
|
|
|
distance = (detection_position - estimate_position).astype(float)
|
|
# change in x relative to w
|
|
distance[0] /= estimate_dim[0]
|
|
# change in y relative to h
|
|
distance[1] /= estimate_dim[1]
|
|
|
|
# get ratio of widths and heights
|
|
# normalize to 1
|
|
widths = np.sort([estimate_dim[0], detection_dim[0]])
|
|
heights = np.sort([estimate_dim[1], detection_dim[1]])
|
|
width_ratio = widths[1] / widths[0] - 1.0
|
|
height_ratio = heights[1] / heights[0] - 1.0
|
|
|
|
# change vector is relative x,y change and w,h ratio
|
|
change = np.append(distance, np.array([width_ratio, height_ratio]))
|
|
|
|
# calculate euclidean distance of the change vector
|
|
return np.linalg.norm(change)
|
|
|
|
|
|
def frigate_distance(detection: Detection, tracked_object) -> float:
|
|
return distance(detection.points, tracked_object.estimate)
|
|
|
|
|
|
class NorfairTracker(ObjectTracker):
|
|
def __init__(
|
|
self,
|
|
config: CameraConfig,
|
|
ptz_metrics: PTZMetricsTypes,
|
|
):
|
|
self.tracked_objects = {}
|
|
self.untracked_object_boxes: list[list[int]] = []
|
|
self.disappeared = {}
|
|
self.positions = {}
|
|
self.stationary_box_history: dict[str, list[list[int, int, int, int]]] = {}
|
|
self.camera_config = config
|
|
self.detect_config = config.detect
|
|
self.ptz_metrics = ptz_metrics
|
|
self.ptz_autotracker_enabled = ptz_metrics["ptz_autotracker_enabled"]
|
|
self.ptz_motion_estimator = {}
|
|
self.camera_name = config.name
|
|
self.track_id_map = {}
|
|
# TODO: could also initialize a tracker per object class if there
|
|
# was a good reason to have different distance calculations
|
|
self.tracker = Tracker(
|
|
distance_function=frigate_distance,
|
|
distance_threshold=2.5,
|
|
initialization_delay=self.detect_config.min_initialized,
|
|
hit_counter_max=self.detect_config.max_disappeared,
|
|
# use default filter factory with custom values
|
|
# R is the multiplier for the sensor measurement noise matrix, default of 4.0
|
|
# lowering R means that we trust the position of the bounding boxes more
|
|
# testing shows that the prediction was being relied on a bit too much
|
|
# TODO: could use different kalman filter values along with
|
|
# the different tracker per object class
|
|
filter_factory=OptimizedKalmanFilterFactory(R=3.4),
|
|
)
|
|
if self.ptz_autotracker_enabled.value:
|
|
self.ptz_motion_estimator = PtzMotionEstimator(
|
|
self.camera_config, self.ptz_metrics
|
|
)
|
|
|
|
def register(self, track_id, obj):
|
|
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
|
id = f"{obj['frame_time']}-{rand_id}"
|
|
self.track_id_map[track_id] = id
|
|
obj["id"] = id
|
|
obj["start_time"] = obj["frame_time"]
|
|
obj["motionless_count"] = 0
|
|
obj["position_changes"] = 0
|
|
obj["score_history"] = [
|
|
p.data["score"]
|
|
for p in next(
|
|
(o for o in self.tracker.tracked_objects if o.global_id == track_id)
|
|
).past_detections
|
|
]
|
|
self.tracked_objects[id] = obj
|
|
self.disappeared[id] = 0
|
|
self.positions[id] = {
|
|
"xmins": [],
|
|
"ymins": [],
|
|
"xmaxs": [],
|
|
"ymaxs": [],
|
|
"xmin": 0,
|
|
"ymin": 0,
|
|
"xmax": self.detect_config.width,
|
|
"ymax": self.detect_config.height,
|
|
}
|
|
self.stationary_box_history[id] = []
|
|
|
|
def deregister(self, id, track_id):
|
|
del self.tracked_objects[id]
|
|
del self.disappeared[id]
|
|
self.tracker.tracked_objects = [
|
|
o for o in self.tracker.tracked_objects if o.global_id != track_id
|
|
]
|
|
del self.track_id_map[track_id]
|
|
|
|
# tracks the current position of the object based on the last N bounding boxes
|
|
# returns False if the object has moved outside its previous position
|
|
def update_position(self, id: str, box: list[int, int, int, int], stationary: bool):
|
|
xmin, ymin, xmax, ymax = box
|
|
position = self.positions[id]
|
|
self.stationary_box_history[id].append(box)
|
|
|
|
if len(self.stationary_box_history[id]) > MAX_STATIONARY_HISTORY:
|
|
self.stationary_box_history[id] = self.stationary_box_history[id][
|
|
-MAX_STATIONARY_HISTORY:
|
|
]
|
|
|
|
avg_iou = intersection_over_union(
|
|
box, average_boxes(self.stationary_box_history[id])
|
|
)
|
|
|
|
# object has minimal or zero iou
|
|
# assume object is active
|
|
if avg_iou < THRESHOLD_KNOWN_ACTIVE_IOU:
|
|
self.positions[id] = {
|
|
"xmins": [xmin],
|
|
"ymins": [ymin],
|
|
"xmaxs": [xmax],
|
|
"ymaxs": [ymax],
|
|
"xmin": xmin,
|
|
"ymin": ymin,
|
|
"xmax": xmax,
|
|
"ymax": ymax,
|
|
}
|
|
return False
|
|
|
|
threshold = (
|
|
THRESHOLD_STATIONARY_CHECK_IOU if stationary else THRESHOLD_ACTIVE_CHECK_IOU
|
|
)
|
|
|
|
# object has iou below threshold, check median to reduce outliers
|
|
if avg_iou < threshold:
|
|
median_iou = intersection_over_union(
|
|
(
|
|
position["xmin"],
|
|
position["ymin"],
|
|
position["xmax"],
|
|
position["ymax"],
|
|
),
|
|
median_of_boxes(self.stationary_box_history[id]),
|
|
)
|
|
|
|
# if the median iou drops below the threshold
|
|
# assume object is no longer stationary
|
|
if median_iou < threshold:
|
|
self.positions[id] = {
|
|
"xmins": [xmin],
|
|
"ymins": [ymin],
|
|
"xmaxs": [xmax],
|
|
"ymaxs": [ymax],
|
|
"xmin": xmin,
|
|
"ymin": ymin,
|
|
"xmax": xmax,
|
|
"ymax": ymax,
|
|
}
|
|
return False
|
|
|
|
# if there are less than 10 entries for the position, add the bounding box
|
|
# and recompute the position box
|
|
if len(position["xmins"]) < 10:
|
|
position["xmins"].append(xmin)
|
|
position["ymins"].append(ymin)
|
|
position["xmaxs"].append(xmax)
|
|
position["ymaxs"].append(ymax)
|
|
# by using percentiles here, we hopefully remove outliers
|
|
position["xmin"] = np.percentile(position["xmins"], 15)
|
|
position["ymin"] = np.percentile(position["ymins"], 15)
|
|
position["xmax"] = np.percentile(position["xmaxs"], 85)
|
|
position["ymax"] = np.percentile(position["ymaxs"], 85)
|
|
|
|
return True
|
|
|
|
def is_expired(self, id):
|
|
obj = self.tracked_objects[id]
|
|
# get the max frames for this label type or the default
|
|
max_frames = self.detect_config.stationary.max_frames.objects.get(
|
|
obj["label"], self.detect_config.stationary.max_frames.default
|
|
)
|
|
|
|
# if there is no max_frames for this label type, continue
|
|
if max_frames is None:
|
|
return False
|
|
|
|
# if the object has exceeded the max_frames setting, deregister
|
|
if (
|
|
obj["motionless_count"] - self.detect_config.stationary.threshold
|
|
> max_frames
|
|
):
|
|
return True
|
|
|
|
return False
|
|
|
|
def update(self, track_id, obj):
|
|
id = self.track_id_map[track_id]
|
|
self.disappeared[id] = 0
|
|
stationary = (
|
|
self.tracked_objects[id]["motionless_count"]
|
|
>= self.detect_config.stationary.threshold
|
|
)
|
|
# update the motionless count if the object has not moved to a new position
|
|
if self.update_position(id, obj["box"], stationary):
|
|
self.tracked_objects[id]["motionless_count"] += 1
|
|
if self.is_expired(id):
|
|
self.deregister(id, track_id)
|
|
return
|
|
else:
|
|
# register the first position change and then only increment if
|
|
# the object was previously stationary
|
|
if (
|
|
self.tracked_objects[id]["position_changes"] == 0
|
|
or self.tracked_objects[id]["motionless_count"]
|
|
>= self.detect_config.stationary.threshold
|
|
):
|
|
self.tracked_objects[id]["position_changes"] += 1
|
|
self.tracked_objects[id]["motionless_count"] = 0
|
|
self.stationary_box_history[id] = []
|
|
|
|
self.tracked_objects[id].update(obj)
|
|
|
|
def update_frame_times(self, frame_time):
|
|
# if the object was there in the last frame, assume it's still there
|
|
detections = [
|
|
(
|
|
obj["label"],
|
|
obj["score"],
|
|
obj["box"],
|
|
obj["area"],
|
|
obj["ratio"],
|
|
obj["region"],
|
|
)
|
|
for id, obj in self.tracked_objects.items()
|
|
if self.disappeared[id] == 0
|
|
]
|
|
self.match_and_update(frame_time, detections=detections)
|
|
|
|
def match_and_update(self, frame_time, detections):
|
|
norfair_detections = []
|
|
|
|
for obj in detections:
|
|
# centroid is used for other things downstream
|
|
centroid_x = int((obj[2][0] + obj[2][2]) / 2.0)
|
|
centroid_y = int((obj[2][1] + obj[2][3]) / 2.0)
|
|
|
|
# track based on top,left and bottom,right corners instead of centroid
|
|
points = np.array([[obj[2][0], obj[2][1]], [obj[2][2], obj[2][3]]])
|
|
|
|
norfair_detections.append(
|
|
Detection(
|
|
points=points,
|
|
label=obj[0],
|
|
data={
|
|
"label": obj[0],
|
|
"score": obj[1],
|
|
"box": obj[2],
|
|
"area": obj[3],
|
|
"ratio": obj[4],
|
|
"region": obj[5],
|
|
"frame_time": frame_time,
|
|
"centroid": (centroid_x, centroid_y),
|
|
},
|
|
)
|
|
)
|
|
|
|
coord_transformations = None
|
|
|
|
if self.ptz_autotracker_enabled.value:
|
|
# we must have been enabled by mqtt, so set up the estimator
|
|
if not self.ptz_motion_estimator:
|
|
self.ptz_motion_estimator = PtzMotionEstimator(
|
|
self.camera_config, self.ptz_metrics
|
|
)
|
|
|
|
coord_transformations = self.ptz_motion_estimator.motion_estimator(
|
|
detections, frame_time, self.camera_name
|
|
)
|
|
|
|
tracked_objects = self.tracker.update(
|
|
detections=norfair_detections, coord_transformations=coord_transformations
|
|
)
|
|
|
|
# update or create new tracks
|
|
active_ids = []
|
|
for t in tracked_objects:
|
|
estimate = tuple(t.estimate.flatten().astype(int))
|
|
# keep the estimate within the bounds of the image
|
|
estimate = (
|
|
max(0, estimate[0]),
|
|
max(0, estimate[1]),
|
|
min(self.detect_config.width - 1, estimate[2]),
|
|
min(self.detect_config.height - 1, estimate[3]),
|
|
)
|
|
obj = {
|
|
**t.last_detection.data,
|
|
"estimate": estimate,
|
|
"estimate_velocity": t.estimate_velocity,
|
|
}
|
|
active_ids.append(t.global_id)
|
|
if t.global_id not in self.track_id_map:
|
|
self.register(t.global_id, obj)
|
|
# if there wasn't a detection in this frame, increment disappeared
|
|
elif t.last_detection.data["frame_time"] != frame_time:
|
|
id = self.track_id_map[t.global_id]
|
|
self.disappeared[id] += 1
|
|
# sometimes the estimate gets way off
|
|
# only update if the upper left corner is actually upper left
|
|
if estimate[0] < estimate[2] and estimate[1] < estimate[3]:
|
|
self.tracked_objects[id]["estimate"] = obj["estimate"]
|
|
# else update it
|
|
else:
|
|
self.update(t.global_id, obj)
|
|
|
|
# clear expired tracks
|
|
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
|
|
for e_id in expired_ids:
|
|
self.deregister(self.track_id_map[e_id], e_id)
|
|
|
|
# update list of object boxes that don't have a tracked object yet
|
|
tracked_object_boxes = [obj["box"] for obj in self.tracked_objects.values()]
|
|
self.untracked_object_boxes = [
|
|
o[2] for o in detections if o[2] not in tracked_object_boxes
|
|
]
|
|
|
|
def debug_draw(self, frame, frame_time):
|
|
active_detections = [
|
|
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
|
for obj in self.tracker.tracked_objects
|
|
if obj.last_detection.data["frame_time"] == frame_time
|
|
]
|
|
missing_detections = [
|
|
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
|
for obj in self.tracker.tracked_objects
|
|
if obj.last_detection.data["frame_time"] != frame_time
|
|
]
|
|
# draw the estimated bounding box
|
|
draw_boxes(frame, self.tracker.tracked_objects, color="green", draw_ids=True)
|
|
# draw the detections that were detected in the current frame
|
|
draw_boxes(frame, active_detections, color="blue", draw_ids=True)
|
|
# draw the detections that are missing in the current frame
|
|
draw_boxes(frame, missing_detections, color="red", draw_ids=True)
|
|
|
|
# draw the distance calculation for the last detection
|
|
# estimate vs detection
|
|
for obj in self.tracker.tracked_objects:
|
|
ld = obj.last_detection
|
|
# bottom right
|
|
text_anchor = (
|
|
ld.points[1, 0],
|
|
ld.points[1, 1],
|
|
)
|
|
frame = Drawer.text(
|
|
frame,
|
|
f"{obj.id}: {str(obj.last_distance)}",
|
|
position=text_anchor,
|
|
size=None,
|
|
color=(255, 0, 0),
|
|
thickness=None,
|
|
)
|