mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-02 00:07:11 +01:00
e8763b3697
* Ignore entire __pycache__ folder instead of individual *.pyc files * Ignore .mypy_cache in git * Rework config YAML parsing to use only ruamel.yaml PyYAML silently overrides keys when encountering duplicates, but ruamel raises and exception by default. Since we're already using it elsewhere, dropping PyYAML is an easy choice to make. * Added EnvString in config to slim down runtime_config() * Added gitlens to devcontainer * Automatically call FrigateConfig.runtime_config() runtime_config needed to be called manually before. Now, it's been removed, but the same code is run by a pydantic validator. * Fix handling of missing -segment_time * Removed type annotation on FrigateConfig's parse I'd like to keep them, but then mypy complains about some fundamental errors with how the pydantic model is structured. I'd like to fix it, but I'd rather work towards moving some of this config to the database.
322 lines
9.8 KiB
Python
322 lines
9.8 KiB
Python
import csv
|
|
import json
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import subprocess as sp
|
|
import sys
|
|
|
|
import click
|
|
import cv2
|
|
import numpy as np
|
|
|
|
sys.path.append("/workspace/frigate")
|
|
|
|
from frigate.config import FrigateConfig # noqa: E402
|
|
from frigate.motion import MotionDetector # noqa: E402
|
|
from frigate.object_detection import LocalObjectDetector # noqa: E402
|
|
from frigate.object_processing import CameraState # noqa: E402
|
|
from frigate.track.centroid_tracker import CentroidTracker # noqa: E402
|
|
from frigate.util import ( # noqa: E402
|
|
EventsPerSecond,
|
|
SharedMemoryFrameManager,
|
|
draw_box_with_label,
|
|
)
|
|
from frigate.video import ( # noqa: E402
|
|
capture_frames,
|
|
process_frames,
|
|
start_or_restart_ffmpeg,
|
|
)
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_frame_shape(source):
|
|
ffprobe_cmd = [
|
|
"ffprobe",
|
|
"-v",
|
|
"panic",
|
|
"-show_error",
|
|
"-show_streams",
|
|
"-of",
|
|
"json",
|
|
source,
|
|
]
|
|
p = sp.run(ffprobe_cmd, capture_output=True)
|
|
info = json.loads(p.stdout)
|
|
|
|
video_info = [s for s in info["streams"] if s["codec_type"] == "video"][0]
|
|
|
|
if video_info["height"] != 0 and video_info["width"] != 0:
|
|
return (video_info["height"], video_info["width"], 3)
|
|
|
|
# fallback to using opencv if ffprobe didn't succeed
|
|
video = cv2.VideoCapture(source)
|
|
ret, frame = video.read()
|
|
frame_shape = frame.shape
|
|
video.release()
|
|
return frame_shape
|
|
|
|
|
|
class ProcessClip:
|
|
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
|
|
self.clip_path = clip_path
|
|
self.camera_name = "camera"
|
|
self.config = config
|
|
self.camera_config = self.config.cameras["camera"]
|
|
self.frame_shape = self.camera_config.frame_shape
|
|
self.ffmpeg_cmd = [
|
|
c["cmd"] for c in self.camera_config.ffmpeg_cmds if "detect" in c["roles"]
|
|
][0]
|
|
self.frame_manager = SharedMemoryFrameManager()
|
|
self.frame_queue = mp.Queue()
|
|
self.detected_objects_queue = mp.Queue()
|
|
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
|
|
|
def load_frames(self):
|
|
fps = EventsPerSecond()
|
|
skipped_fps = EventsPerSecond()
|
|
current_frame = mp.Value("d", 0.0)
|
|
frame_size = (
|
|
self.camera_config.frame_shape_yuv[0]
|
|
* self.camera_config.frame_shape_yuv[1]
|
|
)
|
|
ffmpeg_process = start_or_restart_ffmpeg(
|
|
self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size
|
|
)
|
|
capture_frames(
|
|
ffmpeg_process,
|
|
self.camera_name,
|
|
self.camera_config.frame_shape_yuv,
|
|
self.frame_manager,
|
|
self.frame_queue,
|
|
fps,
|
|
skipped_fps,
|
|
current_frame,
|
|
)
|
|
ffmpeg_process.wait()
|
|
ffmpeg_process.communicate()
|
|
|
|
def process_frames(
|
|
self, object_detector, objects_to_track=["person"], object_filters={}
|
|
):
|
|
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
|
mask[:] = 255
|
|
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
|
|
motion_detector.save_images = False
|
|
|
|
object_tracker = CentroidTracker(self.camera_config.detect)
|
|
process_info = {
|
|
"process_fps": mp.Value("d", 0.0),
|
|
"detection_fps": mp.Value("d", 0.0),
|
|
"detection_frame": mp.Value("d", 0.0),
|
|
}
|
|
|
|
detection_enabled = mp.Value("d", 1)
|
|
motion_enabled = mp.Value("d", True)
|
|
stop_event = mp.Event()
|
|
|
|
process_frames(
|
|
self.camera_name,
|
|
self.frame_queue,
|
|
self.frame_shape,
|
|
self.config.model,
|
|
self.camera_config.detect,
|
|
self.frame_manager,
|
|
motion_detector,
|
|
object_detector,
|
|
object_tracker,
|
|
self.detected_objects_queue,
|
|
process_info,
|
|
objects_to_track,
|
|
object_filters,
|
|
detection_enabled,
|
|
motion_enabled,
|
|
stop_event,
|
|
exit_on_empty=True,
|
|
)
|
|
|
|
def stats(self, debug_path=None):
|
|
total_regions = 0
|
|
total_motion_boxes = 0
|
|
object_ids = set()
|
|
total_frames = 0
|
|
|
|
while not self.detected_objects_queue.empty():
|
|
(
|
|
camera_name,
|
|
frame_time,
|
|
current_tracked_objects,
|
|
motion_boxes,
|
|
regions,
|
|
) = self.detected_objects_queue.get()
|
|
|
|
if debug_path:
|
|
self.save_debug_frame(
|
|
debug_path, frame_time, current_tracked_objects.values()
|
|
)
|
|
|
|
self.camera_state.update(
|
|
frame_time, current_tracked_objects, motion_boxes, regions
|
|
)
|
|
total_regions += len(regions)
|
|
total_motion_boxes += len(motion_boxes)
|
|
top_score = 0
|
|
for id, obj in self.camera_state.tracked_objects.items():
|
|
if not obj.false_positive:
|
|
object_ids.add(id)
|
|
if obj.top_score > top_score:
|
|
top_score = obj.top_score
|
|
|
|
total_frames += 1
|
|
|
|
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
|
|
|
return {
|
|
"total_regions": total_regions,
|
|
"total_motion_boxes": total_motion_boxes,
|
|
"true_positive_objects": len(object_ids),
|
|
"total_frames": total_frames,
|
|
"top_score": top_score,
|
|
}
|
|
|
|
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
|
current_frame = cv2.cvtColor(
|
|
self.frame_manager.get(
|
|
f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv
|
|
),
|
|
cv2.COLOR_YUV2BGR_I420,
|
|
)
|
|
# draw the bounding boxes on the frame
|
|
for obj in tracked_objects:
|
|
thickness = 2
|
|
color = (0, 0, 175)
|
|
if obj["frame_time"] != frame_time:
|
|
thickness = 1
|
|
color = (255, 0, 0)
|
|
else:
|
|
color = (255, 255, 0)
|
|
|
|
# draw the bounding boxes on the frame
|
|
box = obj["box"]
|
|
draw_box_with_label(
|
|
current_frame,
|
|
box[0],
|
|
box[1],
|
|
box[2],
|
|
box[3],
|
|
obj["id"],
|
|
f"{int(obj['score']*100)}% {int(obj['area'])}",
|
|
thickness=thickness,
|
|
color=color,
|
|
)
|
|
# draw the regions on the frame
|
|
region = obj["region"]
|
|
draw_box_with_label(
|
|
current_frame,
|
|
region[0],
|
|
region[1],
|
|
region[2],
|
|
region[3],
|
|
"region",
|
|
"",
|
|
thickness=1,
|
|
color=(0, 255, 0),
|
|
)
|
|
|
|
cv2.imwrite(
|
|
f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg",
|
|
current_frame,
|
|
)
|
|
|
|
|
|
@click.command()
|
|
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
|
@click.option("-l", "--label", default="person", help="Label name to detect.")
|
|
@click.option("-o", "--output", default=None, help="File to save csv of data")
|
|
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
|
def process(path, label, output, debug_path):
|
|
clips = []
|
|
if os.path.isdir(path):
|
|
files = os.listdir(path)
|
|
files.sort()
|
|
clips = [os.path.join(path, file) for file in files]
|
|
elif os.path.isfile(path):
|
|
clips.append(path)
|
|
|
|
json_config = {
|
|
"mqtt": {"enabled": False},
|
|
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
|
|
"cameras": {
|
|
"camera": {
|
|
"ffmpeg": {
|
|
"inputs": [
|
|
{
|
|
"path": "path.mp4",
|
|
"global_args": "-hide_banner",
|
|
"input_args": "-loglevel info",
|
|
"roles": ["detect"],
|
|
}
|
|
]
|
|
},
|
|
"record": {"enabled": False},
|
|
}
|
|
},
|
|
}
|
|
|
|
object_detector = LocalObjectDetector(labels="/labelmap.txt")
|
|
|
|
results = []
|
|
for c in clips:
|
|
logger.info(c)
|
|
frame_shape = get_frame_shape(c)
|
|
|
|
json_config["cameras"]["camera"]["detect"] = {
|
|
"height": frame_shape[0],
|
|
"width": frame_shape[1],
|
|
}
|
|
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
|
|
|
|
frigate_config = FrigateConfig(**json_config)
|
|
process_clip = ProcessClip(c, frame_shape, frigate_config)
|
|
process_clip.load_frames()
|
|
process_clip.process_frames(object_detector, objects_to_track=[label])
|
|
|
|
results.append((c, process_clip.stats(debug_path)))
|
|
|
|
positive_count = sum(
|
|
1 for result in results if result[1]["true_positive_objects"] > 0
|
|
)
|
|
print(
|
|
f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s)."
|
|
)
|
|
|
|
if output:
|
|
# now we will open a file for writing
|
|
data_file = open(output, "w")
|
|
|
|
# create the csv writer object
|
|
csv_writer = csv.writer(data_file)
|
|
|
|
# Counter variable used for writing
|
|
# headers to the CSV file
|
|
count = 0
|
|
|
|
for result in results:
|
|
if count == 0:
|
|
# Writing headers of CSV file
|
|
header = ["file"] + list(result[1].keys())
|
|
csv_writer.writerow(header)
|
|
count += 1
|
|
|
|
# Writing data of CSV file
|
|
csv_writer.writerow([result[0]] + list(result[1].values()))
|
|
|
|
data_file.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
process()
|