mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-26 00:06:32 +01:00
8a8a0c7dec
* Use cosine distance metric for vec tables * Only apply normalization to multi modal searches * Catch possible edge case in stddev calc * Use sigmoid function for normalization for multi modal searches only * Ensure we get model state on initial page load * Only save stats for multi modal searches and only use cosine similarity for image -> image search
54 lines
2.0 KiB
Python
54 lines
2.0 KiB
Python
import sqlite3
|
|
|
|
from playhouse.sqliteq import SqliteQueueDatabase
|
|
|
|
|
|
class SqliteVecQueueDatabase(SqliteQueueDatabase):
|
|
def __init__(self, *args, load_vec_extension: bool = False, **kwargs) -> None:
|
|
self.load_vec_extension: bool = load_vec_extension
|
|
# no extension necessary, sqlite will load correctly for each platform
|
|
self.sqlite_vec_path = "/usr/local/lib/vec0"
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def _connect(self, *args, **kwargs) -> sqlite3.Connection:
|
|
conn: sqlite3.Connection = super()._connect(*args, **kwargs)
|
|
if self.load_vec_extension:
|
|
self._load_vec_extension(conn)
|
|
return conn
|
|
|
|
def _load_vec_extension(self, conn: sqlite3.Connection) -> None:
|
|
conn.enable_load_extension(True)
|
|
conn.load_extension(self.sqlite_vec_path)
|
|
conn.enable_load_extension(False)
|
|
|
|
def delete_embeddings_thumbnail(self, event_ids: list[str]) -> None:
|
|
ids = ",".join(["?" for _ in event_ids])
|
|
self.execute_sql(f"DELETE FROM vec_thumbnails WHERE id IN ({ids})", event_ids)
|
|
|
|
def delete_embeddings_description(self, event_ids: list[str]) -> None:
|
|
ids = ",".join(["?" for _ in event_ids])
|
|
self.execute_sql(f"DELETE FROM vec_descriptions WHERE id IN ({ids})", event_ids)
|
|
|
|
def drop_embeddings_tables(self) -> None:
|
|
self.execute_sql("""
|
|
DROP TABLE vec_descriptions;
|
|
""")
|
|
self.execute_sql("""
|
|
DROP TABLE vec_thumbnails;
|
|
""")
|
|
|
|
def create_embeddings_tables(self) -> None:
|
|
"""Create vec0 virtual table for embeddings"""
|
|
self.execute_sql("""
|
|
CREATE VIRTUAL TABLE IF NOT EXISTS vec_thumbnails USING vec0(
|
|
id TEXT PRIMARY KEY,
|
|
thumbnail_embedding FLOAT[768] distance_metric=cosine
|
|
);
|
|
""")
|
|
self.execute_sql("""
|
|
CREATE VIRTUAL TABLE IF NOT EXISTS vec_descriptions USING vec0(
|
|
id TEXT PRIMARY KEY,
|
|
description_embedding FLOAT[768] distance_metric=cosine
|
|
);
|
|
""")
|