mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* add openvino support for the dfine model * update docs to show DFINE support for openvino * remove warning about OpenVINO for DFINE
		
			
				
	
	
		
			253 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import os
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import openvino as ov
 | 
						|
import openvino.properties as props
 | 
						|
from pydantic import Field
 | 
						|
from typing_extensions import Literal
 | 
						|
 | 
						|
from frigate.const import MODEL_CACHE_DIR
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
 | 
						|
from frigate.util.model import post_process_dfine, post_process_yolov9
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "openvino"
 | 
						|
 | 
						|
 | 
						|
class OvDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
    device: str = Field(default=None, title="Device Type")
 | 
						|
 | 
						|
 | 
						|
class OvDetector(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
    supported_models = [
 | 
						|
        ModelTypeEnum.ssd,
 | 
						|
        ModelTypeEnum.yolonas,
 | 
						|
        ModelTypeEnum.yolov9,
 | 
						|
        ModelTypeEnum.yolox,
 | 
						|
        ModelTypeEnum.dfine,
 | 
						|
    ]
 | 
						|
 | 
						|
    def __init__(self, detector_config: OvDetectorConfig):
 | 
						|
        self.ov_core = ov.Core()
 | 
						|
        self.ov_model_type = detector_config.model.model_type
 | 
						|
 | 
						|
        self.h = detector_config.model.height
 | 
						|
        self.w = detector_config.model.width
 | 
						|
 | 
						|
        if not os.path.isfile(detector_config.model.path):
 | 
						|
            logger.error(f"OpenVino model file {detector_config.model.path} not found.")
 | 
						|
            raise FileNotFoundError
 | 
						|
 | 
						|
        os.makedirs(os.path.join(MODEL_CACHE_DIR, "openvino"), exist_ok=True)
 | 
						|
        self.ov_core.set_property(
 | 
						|
            {props.cache_dir: os.path.join(MODEL_CACHE_DIR, "openvino")}
 | 
						|
        )
 | 
						|
        self.interpreter = self.ov_core.compile_model(
 | 
						|
            model=detector_config.model.path, device_name=detector_config.device
 | 
						|
        )
 | 
						|
 | 
						|
        self.model_invalid = False
 | 
						|
 | 
						|
        if self.ov_model_type not in self.supported_models:
 | 
						|
            logger.error(
 | 
						|
                f"OpenVino detector does not support {self.ov_model_type} models."
 | 
						|
            )
 | 
						|
            self.model_invalid = True
 | 
						|
 | 
						|
        # Ensure the SSD model has the right input and output shapes
 | 
						|
        if self.ov_model_type == ModelTypeEnum.ssd:
 | 
						|
            model_inputs = self.interpreter.inputs
 | 
						|
            model_outputs = self.interpreter.outputs
 | 
						|
 | 
						|
            if len(model_inputs) != 1:
 | 
						|
                logger.error(
 | 
						|
                    f"SSD models must only have 1 input. Found {len(model_inputs)}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
            if len(model_outputs) != 1:
 | 
						|
                logger.error(
 | 
						|
                    f"SSD models must only have 1 output. Found {len(model_outputs)}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
 | 
						|
            if model_inputs[0].get_shape() != ov.Shape([1, self.w, self.h, 3]):
 | 
						|
                logger.error(
 | 
						|
                    f"SSD model input doesn't match. Found {model_inputs[0].get_shape()}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
 | 
						|
            output_shape = model_outputs[0].get_shape()
 | 
						|
            if output_shape[0] != 1 or output_shape[1] != 1 or output_shape[3] != 7:
 | 
						|
                logger.error(f"SSD model output doesn't match. Found {output_shape}.")
 | 
						|
                self.model_invalid = True
 | 
						|
 | 
						|
        if self.ov_model_type == ModelTypeEnum.yolonas:
 | 
						|
            model_inputs = self.interpreter.inputs
 | 
						|
            model_outputs = self.interpreter.outputs
 | 
						|
 | 
						|
            if len(model_inputs) != 1:
 | 
						|
                logger.error(
 | 
						|
                    f"YoloNAS models must only have 1 input. Found {len(model_inputs)}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
            if len(model_outputs) != 1:
 | 
						|
                logger.error(
 | 
						|
                    f"YoloNAS models must be exported in flat format and only have 1 output. Found {len(model_outputs)}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
 | 
						|
            if model_inputs[0].get_shape() != ov.Shape([1, 3, self.w, self.h]):
 | 
						|
                logger.error(
 | 
						|
                    f"YoloNAS model input doesn't match. Found {model_inputs[0].get_shape()}, but expected {[1, 3, self.w, self.h]}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
 | 
						|
            output_shape = model_outputs[0].partial_shape
 | 
						|
            if output_shape[-1] != 7:
 | 
						|
                logger.error(
 | 
						|
                    f"YoloNAS models must be exported in flat format. Model output doesn't match. Found {output_shape}."
 | 
						|
                )
 | 
						|
                self.model_invalid = True
 | 
						|
 | 
						|
        if self.ov_model_type == ModelTypeEnum.yolox:
 | 
						|
            self.output_indexes = 0
 | 
						|
            while True:
 | 
						|
                try:
 | 
						|
                    tensor_shape = self.interpreter.output(self.output_indexes).shape
 | 
						|
                    logger.info(
 | 
						|
                        f"Model Output-{self.output_indexes} Shape: {tensor_shape}"
 | 
						|
                    )
 | 
						|
                    self.output_indexes += 1
 | 
						|
                except Exception:
 | 
						|
                    logger.info(f"Model has {self.output_indexes} Output Tensors")
 | 
						|
                    break
 | 
						|
            self.num_classes = tensor_shape[2] - 5
 | 
						|
            logger.info(f"YOLOX model has {self.num_classes} classes")
 | 
						|
            self.set_strides_grids()
 | 
						|
 | 
						|
    def set_strides_grids(self):
 | 
						|
        grids = []
 | 
						|
        expanded_strides = []
 | 
						|
 | 
						|
        strides = [8, 16, 32]
 | 
						|
 | 
						|
        hsize_list = [self.h // stride for stride in strides]
 | 
						|
        wsize_list = [self.w // stride for stride in strides]
 | 
						|
 | 
						|
        for hsize, wsize, stride in zip(hsize_list, wsize_list, strides):
 | 
						|
            xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
 | 
						|
            grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
 | 
						|
            grids.append(grid)
 | 
						|
            shape = grid.shape[:2]
 | 
						|
            expanded_strides.append(np.full((*shape, 1), stride))
 | 
						|
        self.grids = np.concatenate(grids, 1)
 | 
						|
        self.expanded_strides = np.concatenate(expanded_strides, 1)
 | 
						|
 | 
						|
    ## Takes in class ID, confidence score, and array of [x, y, w, h] that describes detection position,
 | 
						|
    ## returns an array that's easily passable back to Frigate.
 | 
						|
    def process_yolo(self, class_id, conf, pos):
 | 
						|
        return [
 | 
						|
            class_id,  # class ID
 | 
						|
            conf,  # confidence score
 | 
						|
            (pos[1] - (pos[3] / 2)) / self.h,  # y_min
 | 
						|
            (pos[0] - (pos[2] / 2)) / self.w,  # x_min
 | 
						|
            (pos[1] + (pos[3] / 2)) / self.h,  # y_max
 | 
						|
            (pos[0] + (pos[2] / 2)) / self.w,  # x_max
 | 
						|
        ]
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        infer_request = self.interpreter.create_infer_request()
 | 
						|
        # TODO: see if we can use shared_memory=True
 | 
						|
        input_tensor = ov.Tensor(array=tensor_input)
 | 
						|
 | 
						|
        if self.ov_model_type == ModelTypeEnum.dfine:
 | 
						|
            infer_request.set_tensor("images", input_tensor)
 | 
						|
            target_sizes_tensor = ov.Tensor(
 | 
						|
                np.array([[self.h, self.w]], dtype=np.int64)
 | 
						|
            )
 | 
						|
            infer_request.set_tensor("orig_target_sizes", target_sizes_tensor)
 | 
						|
            infer_request.infer()
 | 
						|
            tensor_output = (
 | 
						|
                infer_request.get_output_tensor(0).data,
 | 
						|
                infer_request.get_output_tensor(1).data,
 | 
						|
                infer_request.get_output_tensor(2).data,
 | 
						|
            )
 | 
						|
            return post_process_dfine(tensor_output, self.w, self.h)
 | 
						|
 | 
						|
        infer_request.infer(input_tensor)
 | 
						|
 | 
						|
        detections = np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
        if self.model_invalid:
 | 
						|
            return detections
 | 
						|
        elif self.ov_model_type == ModelTypeEnum.ssd:
 | 
						|
            results = infer_request.get_output_tensor(0).data[0][0]
 | 
						|
 | 
						|
            for i, (_, class_id, score, xmin, ymin, xmax, ymax) in enumerate(results):
 | 
						|
                if i == 20:
 | 
						|
                    break
 | 
						|
                detections[i] = [
 | 
						|
                    class_id,
 | 
						|
                    float(score),
 | 
						|
                    ymin,
 | 
						|
                    xmin,
 | 
						|
                    ymax,
 | 
						|
                    xmax,
 | 
						|
                ]
 | 
						|
            return detections
 | 
						|
        elif self.ov_model_type == ModelTypeEnum.yolonas:
 | 
						|
            predictions = infer_request.get_output_tensor(0).data
 | 
						|
 | 
						|
            for i, prediction in enumerate(predictions):
 | 
						|
                if i == 20:
 | 
						|
                    break
 | 
						|
                (_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
 | 
						|
                # when running in GPU mode, empty predictions in the output have class_id of -1
 | 
						|
                if class_id < 0:
 | 
						|
                    break
 | 
						|
                detections[i] = [
 | 
						|
                    class_id,
 | 
						|
                    confidence,
 | 
						|
                    y_min / self.h,
 | 
						|
                    x_min / self.w,
 | 
						|
                    y_max / self.h,
 | 
						|
                    x_max / self.w,
 | 
						|
                ]
 | 
						|
            return detections
 | 
						|
        elif self.ov_model_type == ModelTypeEnum.yolov9:
 | 
						|
            out_tensor = infer_request.get_output_tensor(0).data
 | 
						|
            return post_process_yolov9(out_tensor, self.w, self.h)
 | 
						|
        elif self.ov_model_type == ModelTypeEnum.yolox:
 | 
						|
            out_tensor = infer_request.get_output_tensor()
 | 
						|
            # [x, y, h, w, box_score, class_no_1, ..., class_no_80],
 | 
						|
            results = out_tensor.data
 | 
						|
            results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides
 | 
						|
            results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
 | 
						|
            image_pred = results[0, ...]
 | 
						|
 | 
						|
            class_conf = np.max(
 | 
						|
                image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True
 | 
						|
            )
 | 
						|
            class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1)
 | 
						|
            class_pred = np.expand_dims(class_pred, axis=1)
 | 
						|
 | 
						|
            conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
 | 
						|
            # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
 | 
						|
            detections = np.concatenate(
 | 
						|
                (image_pred[:, :5], class_conf, class_pred), axis=1
 | 
						|
            )
 | 
						|
            detections = detections[conf_mask]
 | 
						|
 | 
						|
            ordered = detections[detections[:, 5].argsort()[::-1]][:20]
 | 
						|
 | 
						|
            for i, object_detected in enumerate(ordered):
 | 
						|
                detections[i] = self.process_yolo(
 | 
						|
                    object_detected[6], object_detected[5], object_detected[:4]
 | 
						|
                )
 | 
						|
            return detections
 |