mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Use cosine distance metric for vec tables * Only apply normalization to multi modal searches * Catch possible edge case in stddev calc * Use sigmoid function for normalization for multi modal searches only * Ensure we get model state on initial page load * Only save stats for multi modal searches and only use cosine similarity for image -> image search
		
			
				
	
	
		
			55 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Z-score normalization for search distance."""
 | |
| 
 | |
| import math
 | |
| 
 | |
| 
 | |
| class ZScoreNormalization:
 | |
|     def __init__(self, scale_factor: float = 1.0, bias: float = 0.0):
 | |
|         """Initialize with optional scaling and bias adjustments."""
 | |
|         """scale_factor adjusts the magnitude of each score"""
 | |
|         """bias will artificially shift the entire distribution upwards"""
 | |
|         self.n = 0
 | |
|         self.mean = 0
 | |
|         self.m2 = 0
 | |
|         self.scale_factor = scale_factor
 | |
|         self.bias = bias
 | |
| 
 | |
|     @property
 | |
|     def variance(self):
 | |
|         return self.m2 / (self.n - 1) if self.n > 1 else 0.0
 | |
| 
 | |
|     @property
 | |
|     def stddev(self):
 | |
|         return math.sqrt(self.variance) if self.variance > 0 else 0.0
 | |
| 
 | |
|     def normalize(self, distances: list[float], save_stats: bool):
 | |
|         if save_stats:
 | |
|             self._update(distances)
 | |
|         if self.stddev == 0:
 | |
|             return distances
 | |
|         return [
 | |
|             (x - self.mean) / self.stddev * self.scale_factor + self.bias
 | |
|             for x in distances
 | |
|         ]
 | |
| 
 | |
|     def _update(self, distances: list[float]):
 | |
|         for x in distances:
 | |
|             self.n += 1
 | |
|             delta = x - self.mean
 | |
|             self.mean += delta / self.n
 | |
|             delta2 = x - self.mean
 | |
|             self.m2 += delta * delta2
 | |
| 
 | |
|     def to_dict(self):
 | |
|         return {
 | |
|             "n": self.n,
 | |
|             "mean": self.mean,
 | |
|             "m2": self.m2,
 | |
|         }
 | |
| 
 | |
|     def from_dict(self, data: dict):
 | |
|         self.n = data["n"]
 | |
|         self.mean = data["mean"]
 | |
|         self.m2 = data["m2"]
 | |
|         return self
 |