mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			201 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import os.path
 | 
						|
import urllib.request
 | 
						|
from typing import Literal
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
try:
 | 
						|
    from hide_warnings import hide_warnings
 | 
						|
except:  # noqa: E722
 | 
						|
 | 
						|
    def hide_warnings(func):
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
from pydantic import Field
 | 
						|
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "rknn"
 | 
						|
 | 
						|
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3588"]
 | 
						|
 | 
						|
yolov8_suffix = {
 | 
						|
    "default-yolov8n": "n",
 | 
						|
    "default-yolov8s": "s",
 | 
						|
    "default-yolov8m": "m",
 | 
						|
    "default-yolov8l": "l",
 | 
						|
    "default-yolov8x": "x",
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class RknnDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
    core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.")
 | 
						|
 | 
						|
 | 
						|
class Rknn(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
 | 
						|
    def __init__(self, config: RknnDetectorConfig):
 | 
						|
        # find out SoC
 | 
						|
        try:
 | 
						|
            with open("/proc/device-tree/compatible") as file:
 | 
						|
                soc = file.read().split(",")[-1].strip("\x00")
 | 
						|
        except FileNotFoundError:
 | 
						|
            logger.error("Make sure to run docker in privileged mode.")
 | 
						|
            raise Exception("Make sure to run docker in privileged mode.")
 | 
						|
 | 
						|
        if soc not in supported_socs:
 | 
						|
            logger.error(
 | 
						|
                "Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format(
 | 
						|
                    soc, supported_socs
 | 
						|
                )
 | 
						|
            )
 | 
						|
            raise Exception(
 | 
						|
                "Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format(
 | 
						|
                    soc, supported_socs
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        if not os.path.isfile("/usr/lib/librknnrt.so"):
 | 
						|
            if "rk356" in soc:
 | 
						|
                os.rename("/usr/lib/librknnrt_rk356x.so", "/usr/lib/librknnrt.so")
 | 
						|
            elif "rk3588" in soc:
 | 
						|
                os.rename("/usr/lib/librknnrt_rk3588.so", "/usr/lib/librknnrt.so")
 | 
						|
 | 
						|
        self.model_path = config.model.path or "default-yolov8n"
 | 
						|
        self.core_mask = config.core_mask
 | 
						|
        self.height = config.model.height
 | 
						|
        self.width = config.model.width
 | 
						|
 | 
						|
        if self.model_path in yolov8_suffix:
 | 
						|
            if self.model_path == "default-yolov8n":
 | 
						|
                self.model_path = "/models/rknn/yolov8n-320x320-{soc}.rknn".format(
 | 
						|
                    soc=soc
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                model_suffix = yolov8_suffix[self.model_path]
 | 
						|
                self.model_path = (
 | 
						|
                    "/config/model_cache/rknn/yolov8{suffix}-320x320-{soc}.rknn".format(
 | 
						|
                        suffix=model_suffix, soc=soc
 | 
						|
                    )
 | 
						|
                )
 | 
						|
 | 
						|
                os.makedirs("/config/model_cache/rknn", exist_ok=True)
 | 
						|
                if not os.path.isfile(self.model_path):
 | 
						|
                    logger.info(
 | 
						|
                        "Downloading yolov8{suffix} model.".format(suffix=model_suffix)
 | 
						|
                    )
 | 
						|
                    urllib.request.urlretrieve(
 | 
						|
                        "https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-{soc}/yolov8{suffix}-320x320-{soc}.rknn".format(
 | 
						|
                            soc=soc, suffix=model_suffix
 | 
						|
                        ),
 | 
						|
                        self.model_path,
 | 
						|
                    )
 | 
						|
 | 
						|
            if (config.model.width != 320) or (config.model.height != 320):
 | 
						|
                logger.error(
 | 
						|
                    "Make sure to set the model width and height to 320 in your config.yml."
 | 
						|
                )
 | 
						|
                raise Exception(
 | 
						|
                    "Make sure to set the model width and height to 320 in your config.yml."
 | 
						|
                )
 | 
						|
 | 
						|
            if config.model.input_pixel_format != "bgr":
 | 
						|
                logger.error(
 | 
						|
                    'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
 | 
						|
                )
 | 
						|
                raise Exception(
 | 
						|
                    'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
 | 
						|
                )
 | 
						|
 | 
						|
            if config.model.input_tensor != "nhwc":
 | 
						|
                logger.error(
 | 
						|
                    'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
 | 
						|
                )
 | 
						|
                raise Exception(
 | 
						|
                    'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
 | 
						|
                )
 | 
						|
 | 
						|
        from rknnlite.api import RKNNLite
 | 
						|
 | 
						|
        self.rknn = RKNNLite(verbose=False)
 | 
						|
        if self.rknn.load_rknn(self.model_path) != 0:
 | 
						|
            logger.error("Error initializing rknn model.")
 | 
						|
        if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
 | 
						|
            logger.error(
 | 
						|
                "Error initializing rknn runtime. Do you run docker in privileged mode?"
 | 
						|
            )
 | 
						|
 | 
						|
    def __del__(self):
 | 
						|
        self.rknn.release()
 | 
						|
 | 
						|
    def postprocess(self, results):
 | 
						|
        """
 | 
						|
        Processes yolov8 output.
 | 
						|
 | 
						|
        Args:
 | 
						|
        results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100)
 | 
						|
 | 
						|
        Returns:
 | 
						|
        detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
 | 
						|
        """
 | 
						|
 | 
						|
        results = np.transpose(results[0, :, :, 0])  # array shape (2100, 84)
 | 
						|
        scores = np.max(
 | 
						|
            results[:, 4:], axis=1
 | 
						|
        )  # array shape (2100,); max confidence of each row
 | 
						|
 | 
						|
        # remove lines with score scores < 0.4
 | 
						|
        filtered_arg = np.argwhere(scores > 0.4)
 | 
						|
        results = results[filtered_arg[:, 0]]
 | 
						|
        scores = scores[filtered_arg[:, 0]]
 | 
						|
 | 
						|
        num_detections = len(scores)
 | 
						|
 | 
						|
        if num_detections == 0:
 | 
						|
            return np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
        if num_detections > 20:
 | 
						|
            top_arg = np.argpartition(scores, -20)[-20:]
 | 
						|
            results = results[top_arg]
 | 
						|
            scores = scores[top_arg]
 | 
						|
            num_detections = 20
 | 
						|
 | 
						|
        classes = np.argmax(results[:, 4:], axis=1)
 | 
						|
 | 
						|
        boxes = np.transpose(
 | 
						|
            np.vstack(
 | 
						|
                (
 | 
						|
                    (results[:, 1] - 0.5 * results[:, 3]) / self.height,
 | 
						|
                    (results[:, 0] - 0.5 * results[:, 2]) / self.width,
 | 
						|
                    (results[:, 1] + 0.5 * results[:, 3]) / self.height,
 | 
						|
                    (results[:, 0] + 0.5 * results[:, 2]) / self.width,
 | 
						|
                )
 | 
						|
            )
 | 
						|
        )
 | 
						|
 | 
						|
        detections = np.zeros((20, 6), np.float32)
 | 
						|
        detections[:num_detections, 0] = classes
 | 
						|
        detections[:num_detections, 1] = scores
 | 
						|
        detections[:num_detections, 2:] = boxes
 | 
						|
 | 
						|
        return detections
 | 
						|
 | 
						|
    @hide_warnings
 | 
						|
    def inference(self, tensor_input):
 | 
						|
        return self.rknn.inference(inputs=tensor_input)
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        output = self.inference(
 | 
						|
            [
 | 
						|
                tensor_input,
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        return self.postprocess(output[0])
 |