blakeblackshear.frigate/frigate/util/model.py
Nicolas Mowen bb51a21bed Fix facedet download (#15811)
* Support downloading face models

* Handle download and loading correctly

* Add face dir creation

* Fix error

* Fix

* Formatting

* Move upload to button

* Show number of faces in library for each name

* Add text color for score

* Cleanup
2025-01-18 21:34:09 -07:00

339 lines
11 KiB
Python

"""Model Utils"""
import logging
import os
from typing import Any
import cv2
import numpy as np
import onnxruntime as ort
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config.semantic_search import FaceRecognitionConfig
from frigate.const import MODEL_CACHE_DIR
try:
import openvino as ov
except ImportError:
# openvino is not included
pass
logger = logging.getLogger(__name__)
MIN_MATCHING_FACES = 2
def get_ort_providers(
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]:
if force_cpu:
return (
["CPUExecutionProvider"],
[
{
"enable_cpu_mem_arena": False,
}
],
)
providers = []
options = []
for provider in ort.get_available_providers():
if provider == "CUDAExecutionProvider":
device_id = 0 if not device.isdigit() else int(device)
providers.append(provider)
options.append(
{
"arena_extend_strategy": "kSameAsRequested",
"device_id": device_id,
}
)
elif provider == "TensorrtExecutionProvider":
# TensorrtExecutionProvider uses too much memory without options to control it
# so it is not enabled by default
if device == "Tensorrt":
os.makedirs(
"/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True
)
device_id = 0 if not device.isdigit() else int(device)
providers.append(provider)
options.append(
{
"device_id": device_id,
"trt_fp16_enable": requires_fp16
and os.environ.get("USE_FP_16", "True") != "False",
"trt_timing_cache_enable": True,
"trt_engine_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
else:
continue
elif provider == "OpenVINOExecutionProvider":
os.makedirs("/config/model_cache/openvino/ort", exist_ok=True)
providers.append(provider)
options.append(
{
"arena_extend_strategy": "kSameAsRequested",
"cache_dir": "/config/model_cache/openvino/ort",
"device_type": device,
}
)
elif provider == "CPUExecutionProvider":
providers.append(provider)
options.append(
{
"enable_cpu_mem_arena": False,
}
)
else:
providers.append(provider)
options.append({})
return (providers, options)
class ONNXModelRunner:
"""Run onnx models optimally based on available hardware."""
def __init__(self, model_path: str, device: str, requires_fp16: bool = False):
self.model_path = model_path
self.ort: ort.InferenceSession = None
self.ov: ov.Core = None
providers, options = get_ort_providers(device == "CPU", device, requires_fp16)
self.interpreter = None
if "OpenVINOExecutionProvider" in providers:
try:
# use OpenVINO directly
self.type = "ov"
self.ov = ov.Core()
self.ov.set_property(
{ov.properties.cache_dir: "/config/model_cache/openvino"}
)
self.interpreter = self.ov.compile_model(
model=model_path, device_name=device
)
except Exception as e:
logger.warning(
f"OpenVINO failed to build model, using CPU instead: {e}"
)
self.interpreter = None
# Use ONNXRuntime
if self.interpreter is None:
self.type = "ort"
self.ort = ort.InferenceSession(
model_path,
providers=providers,
provider_options=options,
)
def get_input_names(self) -> list[str]:
if self.type == "ov":
input_names = []
for input in self.interpreter.inputs:
input_names.extend(input.names)
return input_names
elif self.type == "ort":
return [input.name for input in self.ort.get_inputs()]
def run(self, input: dict[str, Any]) -> Any:
if self.type == "ov":
infer_request = self.interpreter.create_infer_request()
input_tensor = list(input.values())
if len(input_tensor) == 1:
input_tensor = ov.Tensor(array=input_tensor[0])
else:
input_tensor = ov.Tensor(array=input_tensor)
infer_request.infer(input_tensor)
return [infer_request.get_output_tensor().data]
elif self.type == "ort":
return self.ort.run(None, input)
class FaceClassificationModel:
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db
self.face_detector: cv2.FaceDetectorYN = None
self.landmark_detector: cv2.face.FacemarkLBF = None
self.face_recognizer: cv2.face.LBPHFaceRecognizer = None
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
self.model_files = {
"facedet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
"landmarkdet.yaml": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
}
if not all(
os.path.exists(os.path.join(download_path, n))
for n in self.model_files.keys()
):
# conditionally import ModelDownloader
from frigate.util.downloader import ModelDownloader
self.downloader = ModelDownloader(
model_name="facedet",
download_path=download_path,
file_names=self.model_files.keys(),
download_func=self.__download_models,
complete_func=self.__build_detector,
)
self.downloader.ensure_model_files()
else:
self.__build_detector()
self.label_map: dict[int, str] = {}
self.__build_classifier()
def __download_models(self, path: str) -> None:
try:
file_name = os.path.basename(path)
# conditionally import ModelDownloader
from frigate.util.downloader import ModelDownloader
ModelDownloader.download_from_url(self.model_files[file_name], path)
except Exception as e:
logger.error(f"Failed to download {path}: {e}")
def __build_detector(self) -> None:
self.face_detector = cv2.FaceDetectorYN.create(
"/config/model_cache/facedet/facedet.onnx",
config="",
input_size=(320, 320),
score_threshold=0.8,
nms_threshold=0.3,
)
self.landmark_detector = cv2.face.createFacemarkLBF()
self.landmark_detector.loadModel("/config/model_cache/facedet/landmarkdet.yaml")
def __build_classifier(self) -> None:
if not self.landmark_detector:
return None
labels = []
faces = []
dir = "/media/frigate/clips/faces"
for idx, name in enumerate(os.listdir(dir)):
if name == "train":
continue
face_folder = os.path.join(dir, name)
if not os.path.isdir(face_folder):
continue
self.label_map[idx] = name
for image in os.listdir(face_folder):
img = cv2.imread(os.path.join(face_folder, image))
if img is None:
continue
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
faces.append(img)
labels.append(idx)
self.recognizer: cv2.face.LBPHFaceRecognizer = (
cv2.face.LBPHFaceRecognizer_create(
radius=2, threshold=(1 - self.config.min_score) * 1000
)
)
self.recognizer.train(faces, np.array(labels))
def __align_face(
self,
image: np.ndarray,
output_width: int,
output_height: int,
) -> np.ndarray:
_, lands = self.landmark_detector.fit(
image, np.array([(0, 0, image.shape[1], image.shape[0])])
)
landmarks = lands[0][0]
# get landmarks for eyes
leftEyePts = landmarks[42:48]
rightEyePts = landmarks[36:42]
# compute the center of mass for each eye
leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
rightEyeCenter = rightEyePts.mean(axis=0).astype("int")
# compute the angle between the eye centroids
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
angle = np.degrees(np.arctan2(dY, dX)) - 180
# compute the desired right eye x-coordinate based on the
# desired x-coordinate of the left eye
desiredRightEyeX = 1.0 - 0.35
# determine the scale of the new resulting image by taking
# the ratio of the distance between eyes in the *current*
# image to the ratio of distance between eyes in the
# *desired* image
dist = np.sqrt((dX**2) + (dY**2))
desiredDist = desiredRightEyeX - 0.35
desiredDist *= output_width
scale = desiredDist / dist
# compute center (x, y)-coordinates (i.e., the median point)
# between the two eyes in the input image
# grab the rotation matrix for rotating and scaling the face
eyesCenter = (
int((leftEyeCenter[0] + rightEyeCenter[0]) // 2),
int((leftEyeCenter[1] + rightEyeCenter[1]) // 2),
)
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
# update the translation component of the matrix
tX = output_width * 0.5
tY = output_height * 0.35
M[0, 2] += tX - eyesCenter[0]
M[1, 2] += tY - eyesCenter[1]
# apply the affine transformation
return cv2.warpAffine(
image, M, (output_width, output_height), flags=cv2.INTER_CUBIC
)
def clear_classifier(self) -> None:
self.classifier = None
self.labeler = None
self.label_map = {}
def detect_faces(self, input: np.ndarray) -> tuple[int, cv2.typing.MatLike] | None:
if not self.face_detector:
return None
self.face_detector.setInputSize((input.shape[1], input.shape[0]))
return self.face_detector.detect(input)
def classify_face(self, face_image: np.ndarray) -> tuple[str, float] | None:
if not self.landmark_detector:
return None
if not self.label_map:
self.__build_classifier()
img = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
index, distance = self.recognizer.predict(img)
if index == -1:
return None
score = 1.0 - (distance / 1000)
return self.label_map[index], round(score, 2)