mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
339 lines
11 KiB
Python
339 lines
11 KiB
Python
"""SQLite-vec embeddings database."""
|
|
|
|
import base64
|
|
import io
|
|
import logging
|
|
import struct
|
|
import time
|
|
from typing import List, Tuple, Union
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
from playhouse.shortcuts import model_to_dict
|
|
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.const import UPDATE_MODEL_STATE
|
|
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
|
from frigate.models import Event
|
|
from frigate.types import ModelStatusTypesEnum
|
|
|
|
from .functions.onnx import GenericONNXEmbedding
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_metadata(event: Event) -> dict:
|
|
"""Extract valid event metadata."""
|
|
event_dict = model_to_dict(event)
|
|
return (
|
|
{
|
|
k: v
|
|
for k, v in event_dict.items()
|
|
if k not in ["thumbnail"]
|
|
and v is not None
|
|
and isinstance(v, (str, int, float, bool))
|
|
}
|
|
| {
|
|
k: v
|
|
for k, v in event_dict["data"].items()
|
|
if k not in ["description"]
|
|
and v is not None
|
|
and isinstance(v, (str, int, float, bool))
|
|
}
|
|
| {
|
|
# Metadata search doesn't support $contains
|
|
# and an event can have multiple zones, so
|
|
# we need to create a key for each zone
|
|
f"{k}_{x}": True
|
|
for k, v in event_dict.items()
|
|
if isinstance(v, list) and len(v) > 0
|
|
for x in v
|
|
if isinstance(x, str)
|
|
}
|
|
)
|
|
|
|
|
|
def serialize(vector: Union[List[float], np.ndarray, float]) -> bytes:
|
|
"""Serializes a list of floats, numpy array, or single float into a compact "raw bytes" format"""
|
|
if isinstance(vector, np.ndarray):
|
|
# Convert numpy array to list of floats
|
|
vector = vector.flatten().tolist()
|
|
elif isinstance(vector, (float, np.float32, np.float64)):
|
|
# Handle single float values
|
|
vector = [vector]
|
|
elif not isinstance(vector, list):
|
|
raise TypeError(
|
|
f"Input must be a list of floats, a numpy array, or a single float. Got {type(vector)}"
|
|
)
|
|
|
|
try:
|
|
return struct.pack("%sf" % len(vector), *vector)
|
|
except struct.error as e:
|
|
raise ValueError(f"Failed to pack vector: {e}. Vector: {vector}")
|
|
|
|
|
|
def deserialize(bytes_data: bytes) -> List[float]:
|
|
"""Deserializes a compact "raw bytes" format into a list of floats"""
|
|
return list(struct.unpack("%sf" % (len(bytes_data) // 4), bytes_data))
|
|
|
|
|
|
class Embeddings:
|
|
"""SQLite-vec embeddings database."""
|
|
|
|
def __init__(self, db: SqliteVecQueueDatabase) -> None:
|
|
self.db = db
|
|
self.requestor = InterProcessRequestor()
|
|
|
|
# Create tables if they don't exist
|
|
self._create_tables()
|
|
|
|
models = [
|
|
"jinaai/jina-clip-v1-text_model_fp16.onnx",
|
|
"jinaai/jina-clip-v1-tokenizer",
|
|
"jinaai/jina-clip-v1-vision_model_fp16.onnx",
|
|
"jinaai/jina-clip-v1-preprocessor_config.json",
|
|
]
|
|
|
|
for model in models:
|
|
self.requestor.send_data(
|
|
UPDATE_MODEL_STATE,
|
|
{
|
|
"model": model,
|
|
"state": ModelStatusTypesEnum.not_downloaded,
|
|
},
|
|
)
|
|
|
|
def jina_text_embedding_function(outputs):
|
|
return outputs[0]
|
|
|
|
def jina_vision_embedding_function(outputs):
|
|
return outputs[0]
|
|
|
|
self.text_embedding = GenericONNXEmbedding(
|
|
model_name="jinaai/jina-clip-v1",
|
|
model_file="text_model_fp16.onnx",
|
|
tokenizer_file="tokenizer",
|
|
download_urls={
|
|
"text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx",
|
|
},
|
|
embedding_function=jina_text_embedding_function,
|
|
model_type="text",
|
|
force_cpu=True,
|
|
)
|
|
|
|
self.vision_embedding = GenericONNXEmbedding(
|
|
model_name="jinaai/jina-clip-v1",
|
|
model_file="vision_model_fp16.onnx",
|
|
download_urls={
|
|
"vision_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/vision_model_fp16.onnx",
|
|
"preprocessor_config.json": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/preprocessor_config.json",
|
|
},
|
|
embedding_function=jina_vision_embedding_function,
|
|
model_type="vision",
|
|
)
|
|
|
|
def _create_tables(self):
|
|
# Create vec0 virtual table for thumbnail embeddings
|
|
self.db.execute_sql("""
|
|
CREATE VIRTUAL TABLE IF NOT EXISTS vec_thumbnails USING vec0(
|
|
id TEXT PRIMARY KEY,
|
|
thumbnail_embedding FLOAT[768]
|
|
);
|
|
""")
|
|
|
|
# Create vec0 virtual table for description embeddings
|
|
self.db.execute_sql("""
|
|
CREATE VIRTUAL TABLE IF NOT EXISTS vec_descriptions USING vec0(
|
|
id TEXT PRIMARY KEY,
|
|
description_embedding FLOAT[768]
|
|
);
|
|
""")
|
|
|
|
def _drop_tables(self):
|
|
self.db.execute_sql("""
|
|
DROP TABLE vec_descriptions;
|
|
""")
|
|
self.db.execute_sql("""
|
|
DROP TABLE vec_thumbnails;
|
|
""")
|
|
|
|
def upsert_thumbnail(self, event_id: str, thumbnail: bytes):
|
|
# Convert thumbnail bytes to PIL Image
|
|
image = Image.open(io.BytesIO(thumbnail)).convert("RGB")
|
|
embedding = self.vision_embedding([image])[0]
|
|
|
|
self.db.execute_sql(
|
|
"""
|
|
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
|
|
VALUES(?, ?)
|
|
""",
|
|
(event_id, serialize(embedding)),
|
|
)
|
|
|
|
return embedding
|
|
|
|
def upsert_description(self, event_id: str, description: str):
|
|
embedding = self.text_embedding([description])[0]
|
|
|
|
self.db.execute_sql(
|
|
"""
|
|
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
|
|
VALUES(?, ?)
|
|
""",
|
|
(event_id, serialize(embedding)),
|
|
)
|
|
|
|
return embedding
|
|
|
|
def delete_thumbnail(self, event_ids: List[str]) -> None:
|
|
ids = ",".join(["?" for _ in event_ids])
|
|
self.db.execute_sql(
|
|
f"DELETE FROM vec_thumbnails WHERE id IN ({ids})", event_ids
|
|
)
|
|
|
|
def delete_description(self, event_ids: List[str]) -> None:
|
|
ids = ",".join(["?" for _ in event_ids])
|
|
self.db.execute_sql(
|
|
f"DELETE FROM vec_descriptions WHERE id IN ({ids})", event_ids
|
|
)
|
|
|
|
def search_thumbnail(
|
|
self, query: Union[Event, str], event_ids: List[str] = None
|
|
) -> List[Tuple[str, float]]:
|
|
if query.__class__ == Event:
|
|
cursor = self.db.execute_sql(
|
|
"""
|
|
SELECT thumbnail_embedding FROM vec_thumbnails WHERE id = ?
|
|
""",
|
|
[query.id],
|
|
)
|
|
|
|
row = cursor.fetchone() if cursor else None
|
|
|
|
if row:
|
|
query_embedding = deserialize(
|
|
row[0]
|
|
) # Deserialize the thumbnail embedding
|
|
else:
|
|
# If no embedding found, generate it and return it
|
|
thumbnail = base64.b64decode(query.thumbnail)
|
|
query_embedding = self.upsert_thumbnail(query.id, thumbnail)
|
|
else:
|
|
query_embedding = self.text_embedding([query])[0]
|
|
|
|
sql_query = """
|
|
SELECT
|
|
id,
|
|
distance
|
|
FROM vec_thumbnails
|
|
WHERE thumbnail_embedding MATCH ?
|
|
AND k = 100
|
|
"""
|
|
|
|
# Add the IN clause if event_ids is provided and not empty
|
|
# this is the only filter supported by sqlite-vec as of 0.1.3
|
|
# but it seems to be broken in this version
|
|
if event_ids:
|
|
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
|
|
|
|
# order by distance DESC is not implemented in this version of sqlite-vec
|
|
# when it's implemented, we can use cosine similarity
|
|
sql_query += " ORDER BY distance"
|
|
|
|
parameters = (
|
|
[serialize(query_embedding)] + event_ids
|
|
if event_ids
|
|
else [serialize(query_embedding)]
|
|
)
|
|
|
|
results = self.db.execute_sql(sql_query, parameters).fetchall()
|
|
|
|
return results
|
|
|
|
def search_description(
|
|
self, query_text: str, event_ids: List[str] = None
|
|
) -> List[Tuple[str, float]]:
|
|
query_embedding = self.text_embedding([query_text])[0]
|
|
|
|
# Prepare the base SQL query
|
|
sql_query = """
|
|
SELECT
|
|
id,
|
|
distance
|
|
FROM vec_descriptions
|
|
WHERE description_embedding MATCH ?
|
|
AND k = 100
|
|
"""
|
|
|
|
# Add the IN clause if event_ids is provided and not empty
|
|
# this is the only filter supported by sqlite-vec as of 0.1.3
|
|
# but it seems to be broken in this version
|
|
if event_ids:
|
|
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
|
|
|
|
# order by distance DESC is not implemented in this version of sqlite-vec
|
|
# when it's implemented, we can use cosine similarity
|
|
sql_query += " ORDER BY distance"
|
|
|
|
parameters = (
|
|
[serialize(query_embedding)] + event_ids
|
|
if event_ids
|
|
else [serialize(query_embedding)]
|
|
)
|
|
|
|
results = self.db.execute_sql(sql_query, parameters).fetchall()
|
|
|
|
return results
|
|
|
|
def reindex(self) -> None:
|
|
logger.info("Indexing event embeddings...")
|
|
|
|
self._drop_tables()
|
|
self._create_tables()
|
|
|
|
st = time.time()
|
|
totals = {
|
|
"thumb": 0,
|
|
"desc": 0,
|
|
}
|
|
|
|
batch_size = 100
|
|
current_page = 1
|
|
events = (
|
|
Event.select()
|
|
.where(
|
|
(Event.has_clip == True | Event.has_snapshot == True)
|
|
& Event.thumbnail.is_null(False)
|
|
)
|
|
.order_by(Event.start_time.desc())
|
|
.paginate(current_page, batch_size)
|
|
)
|
|
|
|
while len(events) > 0:
|
|
event: Event
|
|
for event in events:
|
|
thumbnail = base64.b64decode(event.thumbnail)
|
|
self.upsert_thumbnail(event.id, thumbnail)
|
|
totals["thumb"] += 1
|
|
if description := event.data.get("description", "").strip():
|
|
totals["desc"] += 1
|
|
self.upsert_description(event.id, description)
|
|
|
|
current_page += 1
|
|
events = (
|
|
Event.select()
|
|
.where(
|
|
(Event.has_clip == True | Event.has_snapshot == True)
|
|
& Event.thumbnail.is_null(False)
|
|
)
|
|
.order_by(Event.start_time.desc())
|
|
.paginate(current_page, batch_size)
|
|
)
|
|
|
|
logger.info(
|
|
"Embedded %d thumbnails and %d descriptions in %s seconds",
|
|
totals["thumb"],
|
|
totals["desc"],
|
|
time.time() - st,
|
|
)
|