mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			287 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import os
 | 
						|
import urllib.request
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
try:
 | 
						|
    from hailo_platform import (
 | 
						|
        HEF,
 | 
						|
        ConfigureParams,
 | 
						|
        FormatType,
 | 
						|
        HailoRTException,
 | 
						|
        HailoStreamInterface,
 | 
						|
        InferVStreams,
 | 
						|
        InputVStreamParams,
 | 
						|
        OutputVStreamParams,
 | 
						|
        VDevice,
 | 
						|
    )
 | 
						|
except ModuleNotFoundError:
 | 
						|
    pass
 | 
						|
 | 
						|
from pydantic import BaseModel, Field
 | 
						|
from typing_extensions import Literal
 | 
						|
 | 
						|
from frigate.const import MODEL_CACHE_DIR
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig
 | 
						|
 | 
						|
# Set up logging
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
# Define the detector key for Hailo
 | 
						|
DETECTOR_KEY = "hailo8l"
 | 
						|
 | 
						|
 | 
						|
# Configuration class for model settings
 | 
						|
class ModelConfig(BaseModel):
 | 
						|
    path: str = Field(default=None, title="Model Path")  # Path to the HEF file
 | 
						|
 | 
						|
 | 
						|
# Configuration class for Hailo detector
 | 
						|
class HailoDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]  # Type of the detector
 | 
						|
    device: str = Field(default="PCIe", title="Device Type")  # Device type (e.g., PCIe)
 | 
						|
 | 
						|
 | 
						|
# Hailo detector class implementation
 | 
						|
class HailoDetector(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY  # Set the type key to the Hailo detector key
 | 
						|
 | 
						|
    def __init__(self, detector_config: HailoDetectorConfig):
 | 
						|
        # Initialize device type and model path from the configuration
 | 
						|
        self.h8l_device_type = detector_config.device
 | 
						|
        self.h8l_model_path = detector_config.model.path
 | 
						|
        self.h8l_model_height = detector_config.model.height
 | 
						|
        self.h8l_model_width = detector_config.model.width
 | 
						|
        self.h8l_model_type = detector_config.model.model_type
 | 
						|
        self.h8l_tensor_format = detector_config.model.input_tensor
 | 
						|
        self.h8l_pixel_format = detector_config.model.input_pixel_format
 | 
						|
        self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.11.0/hailo8l/ssd_mobilenet_v1.hef"
 | 
						|
        self.cache_dir = os.path.join(MODEL_CACHE_DIR, "h8l_cache")
 | 
						|
        self.expected_model_filename = "ssd_mobilenet_v1.hef"
 | 
						|
        output_type = "FLOAT32"
 | 
						|
 | 
						|
        logger.info(f"Initializing Hailo device as {self.h8l_device_type}")
 | 
						|
        self.check_and_prepare_model()
 | 
						|
        try:
 | 
						|
            # Validate device type
 | 
						|
            if self.h8l_device_type not in ["PCIe", "M.2"]:
 | 
						|
                raise ValueError(f"Unsupported device type: {self.h8l_device_type}")
 | 
						|
 | 
						|
            # Initialize the Hailo device
 | 
						|
            self.target = VDevice()
 | 
						|
            # Load the HEF (Hailo's binary format for neural networks)
 | 
						|
            self.hef = HEF(self.h8l_model_path)
 | 
						|
            # Create configuration parameters from the HEF
 | 
						|
            self.configure_params = ConfigureParams.create_from_hef(
 | 
						|
                hef=self.hef, interface=HailoStreamInterface.PCIe
 | 
						|
            )
 | 
						|
            # Configure the device with the HEF
 | 
						|
            self.network_groups = self.target.configure(self.hef, self.configure_params)
 | 
						|
            self.network_group = self.network_groups[0]
 | 
						|
            self.network_group_params = self.network_group.create_params()
 | 
						|
 | 
						|
            # Create input and output virtual stream parameters
 | 
						|
            self.input_vstream_params = InputVStreamParams.make(
 | 
						|
                self.network_group,
 | 
						|
                format_type=self.hef.get_input_vstream_infos()[0].format.type,
 | 
						|
            )
 | 
						|
            self.output_vstream_params = OutputVStreamParams.make(
 | 
						|
                self.network_group, format_type=getattr(FormatType, output_type)
 | 
						|
            )
 | 
						|
 | 
						|
            # Get input and output stream information from the HEF
 | 
						|
            self.input_vstream_info = self.hef.get_input_vstream_infos()
 | 
						|
            self.output_vstream_info = self.hef.get_output_vstream_infos()
 | 
						|
 | 
						|
            logger.info("Hailo device initialized successfully")
 | 
						|
            logger.debug(f"[__init__] Model Path: {self.h8l_model_path}")
 | 
						|
            logger.debug(f"[__init__] Input Tensor Format: {self.h8l_tensor_format}")
 | 
						|
            logger.debug(f"[__init__] Input Pixel Format: {self.h8l_pixel_format}")
 | 
						|
            logger.debug(f"[__init__] Input VStream Info: {self.input_vstream_info[0]}")
 | 
						|
            logger.debug(
 | 
						|
                f"[__init__] Output VStream Info: {self.output_vstream_info[0]}"
 | 
						|
            )
 | 
						|
        except HailoRTException as e:
 | 
						|
            logger.error(f"HailoRTException during initialization: {e}")
 | 
						|
            raise
 | 
						|
        except Exception as e:
 | 
						|
            logger.error(f"Failed to initialize Hailo device: {e}")
 | 
						|
            raise
 | 
						|
 | 
						|
    def check_and_prepare_model(self):
 | 
						|
        # Ensure cache directory exists
 | 
						|
        if not os.path.exists(self.cache_dir):
 | 
						|
            os.makedirs(self.cache_dir)
 | 
						|
 | 
						|
        # Check for the expected model file
 | 
						|
        model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
 | 
						|
        if not os.path.isfile(model_file_path):
 | 
						|
            logger.info(
 | 
						|
                f"A model file was not found at {model_file_path}, Downloading one from {self.model_url}."
 | 
						|
            )
 | 
						|
            urllib.request.urlretrieve(self.model_url, model_file_path)
 | 
						|
            logger.info(f"A model file was downloaded to {model_file_path}.")
 | 
						|
        else:
 | 
						|
            logger.info(
 | 
						|
                f"A model file already exists at {model_file_path} not downloading one."
 | 
						|
            )
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        logger.debug("[detect_raw] Entering function")
 | 
						|
        logger.debug(
 | 
						|
            f"[detect_raw] The `tensor_input` = {tensor_input} tensor_input shape = {tensor_input.shape}"
 | 
						|
        )
 | 
						|
 | 
						|
        if tensor_input is None:
 | 
						|
            raise ValueError(
 | 
						|
                "[detect_raw] The 'tensor_input' argument must be provided"
 | 
						|
            )
 | 
						|
 | 
						|
        # Ensure tensor_input is a numpy array
 | 
						|
        if isinstance(tensor_input, list):
 | 
						|
            tensor_input = np.array(tensor_input)
 | 
						|
            logger.debug(
 | 
						|
                f"[detect_raw] Converted tensor_input to numpy array: shape {tensor_input.shape}"
 | 
						|
            )
 | 
						|
 | 
						|
        input_data = tensor_input
 | 
						|
        logger.debug(
 | 
						|
            f"[detect_raw] Input data for inference shape: {tensor_input.shape}, dtype: {tensor_input.dtype}"
 | 
						|
        )
 | 
						|
 | 
						|
        try:
 | 
						|
            with InferVStreams(
 | 
						|
                self.network_group,
 | 
						|
                self.input_vstream_params,
 | 
						|
                self.output_vstream_params,
 | 
						|
            ) as infer_pipeline:
 | 
						|
                input_dict = {}
 | 
						|
                if isinstance(input_data, dict):
 | 
						|
                    input_dict = input_data
 | 
						|
                    logger.debug("[detect_raw] it a dictionary.")
 | 
						|
                elif isinstance(input_data, (list, tuple)):
 | 
						|
                    for idx, layer_info in enumerate(self.input_vstream_info):
 | 
						|
                        input_dict[layer_info.name] = input_data[idx]
 | 
						|
                        logger.debug("[detect_raw] converted from list/tuple.")
 | 
						|
                else:
 | 
						|
                    if len(input_data.shape) == 3:
 | 
						|
                        input_data = np.expand_dims(input_data, axis=0)
 | 
						|
                        logger.debug("[detect_raw] converted from an array.")
 | 
						|
                    input_dict[self.input_vstream_info[0].name] = input_data
 | 
						|
 | 
						|
                logger.debug(
 | 
						|
                    f"[detect_raw] Input dictionary for inference keys: {input_dict.keys()}"
 | 
						|
                )
 | 
						|
 | 
						|
                with self.network_group.activate(self.network_group_params):
 | 
						|
                    raw_output = infer_pipeline.infer(input_dict)
 | 
						|
                    logger.debug(f"[detect_raw] Raw inference output: {raw_output}")
 | 
						|
 | 
						|
                    if self.output_vstream_info[0].name not in raw_output:
 | 
						|
                        logger.error(
 | 
						|
                            f"[detect_raw] Missing output stream {self.output_vstream_info[0].name} in inference results"
 | 
						|
                        )
 | 
						|
                        return np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
                    raw_output = raw_output[self.output_vstream_info[0].name][0]
 | 
						|
                    logger.debug(
 | 
						|
                        f"[detect_raw] Raw output for stream {self.output_vstream_info[0].name}: {raw_output}"
 | 
						|
                    )
 | 
						|
 | 
						|
            # Process the raw output
 | 
						|
            detections = self.process_detections(raw_output)
 | 
						|
            if len(detections) == 0:
 | 
						|
                logger.debug(
 | 
						|
                    "[detect_raw] No detections found after processing. Setting default values."
 | 
						|
                )
 | 
						|
                return np.zeros((20, 6), np.float32)
 | 
						|
            else:
 | 
						|
                formatted_detections = detections
 | 
						|
                if (
 | 
						|
                    formatted_detections.shape[1] != 6
 | 
						|
                ):  # Ensure the formatted detections have 6 columns
 | 
						|
                    logger.error(
 | 
						|
                        f"[detect_raw] Unexpected shape for formatted detections: {formatted_detections.shape}. Expected (20, 6)."
 | 
						|
                    )
 | 
						|
                    return np.zeros((20, 6), np.float32)
 | 
						|
                return formatted_detections
 | 
						|
        except HailoRTException as e:
 | 
						|
            logger.error(f"[detect_raw] HailoRTException during inference: {e}")
 | 
						|
            return np.zeros((20, 6), np.float32)
 | 
						|
        except Exception as e:
 | 
						|
            logger.error(f"[detect_raw] Exception during inference: {e}")
 | 
						|
            return np.zeros((20, 6), np.float32)
 | 
						|
        finally:
 | 
						|
            logger.debug("[detect_raw] Exiting function")
 | 
						|
 | 
						|
    def process_detections(self, raw_detections, threshold=0.5):
 | 
						|
        boxes, scores, classes = [], [], []
 | 
						|
        num_detections = 0
 | 
						|
 | 
						|
        logger.debug(f"[process_detections] Raw detections: {raw_detections}")
 | 
						|
 | 
						|
        for i, detection_set in enumerate(raw_detections):
 | 
						|
            if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
 | 
						|
                logger.debug(
 | 
						|
                    f"[process_detections] Detection set {i} is empty or not an array, skipping."
 | 
						|
                )
 | 
						|
                continue
 | 
						|
 | 
						|
            logger.debug(
 | 
						|
                f"[process_detections] Detection set {i} shape: {detection_set.shape}"
 | 
						|
            )
 | 
						|
 | 
						|
            for detection in detection_set:
 | 
						|
                if detection.shape[0] == 0:
 | 
						|
                    logger.debug(
 | 
						|
                        f"[process_detections] Detection in set {i} is empty, skipping."
 | 
						|
                    )
 | 
						|
                    continue
 | 
						|
 | 
						|
                ymin, xmin, ymax, xmax = detection[:4]
 | 
						|
                score = np.clip(detection[4], 0, 1)  # Use np.clip for clarity
 | 
						|
 | 
						|
                if score < threshold:
 | 
						|
                    logger.debug(
 | 
						|
                        f"[process_detections] Detection in set {i} has a score {score} below threshold {threshold}. Skipping."
 | 
						|
                    )
 | 
						|
                    continue
 | 
						|
 | 
						|
                logger.debug(
 | 
						|
                    f"[process_detections] Adding detection with coordinates: ({xmin}, {ymin}), ({xmax}, {ymax}) and score: {score}"
 | 
						|
                )
 | 
						|
                boxes.append([ymin, xmin, ymax, xmax])
 | 
						|
                scores.append(score)
 | 
						|
                classes.append(i)
 | 
						|
                num_detections += 1
 | 
						|
 | 
						|
        logger.debug(
 | 
						|
            f"[process_detections] Boxes: {boxes}, Scores: {scores}, Classes: {classes}, Num detections: {num_detections}"
 | 
						|
        )
 | 
						|
 | 
						|
        if num_detections == 0:
 | 
						|
            logger.debug("[process_detections] No valid detections found.")
 | 
						|
            return np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
        combined = np.hstack(
 | 
						|
            (
 | 
						|
                np.array(classes)[:, np.newaxis],
 | 
						|
                np.array(scores)[:, np.newaxis],
 | 
						|
                np.array(boxes),
 | 
						|
            )
 | 
						|
        )
 | 
						|
 | 
						|
        if combined.shape[0] < 20:
 | 
						|
            padding = np.zeros(
 | 
						|
                (20 - combined.shape[0], combined.shape[1]), dtype=combined.dtype
 | 
						|
            )
 | 
						|
            combined = np.vstack((combined, padding))
 | 
						|
 | 
						|
        logger.debug(
 | 
						|
            f"[process_detections] Combined detections (padded to 20 if necessary): {np.array_str(combined, precision=4, suppress_small=True)}"
 | 
						|
        )
 | 
						|
 | 
						|
        return combined[:20, :6]
 |