blakeblackshear.frigate/frigate/embeddings/__init__.py
Nicolas Mowen 13e90fc6e0 Face recognition backend (#14495)
* Add basic config and face recognition table

* Reconfigure updates processing to handle face

* Crop frame to face box

* Implement face embedding calculation

* Get matching face embeddings

* Add support face recognition based on existing faces

* Use arcface face embeddings instead of generic embeddings model

* Add apis for managing faces

* Implement face uploading API

* Build out more APIs

* Add min area config

* Handle larger images

* Add more debug logs

* fix calculation

* Reduce timeout

* Small tweaks

* Use webp images

* Use facenet model
2024-11-24 08:33:08 -07:00

220 lines
6.8 KiB
Python

"""SQLite-vec embeddings database."""
import base64
import json
import logging
import multiprocessing as mp
import os
import signal
import threading
from types import FrameType
from typing import Optional, Union
from setproctitle import setproctitle
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.util.builtin import serialize
from frigate.util.services import listen
from .maintainer import EmbeddingMaintainer
from .util import ZScoreNormalization
logger = logging.getLogger(__name__)
def manage_embeddings(config: FrigateConfig) -> None:
# Only initialize embeddings if semantic search is enabled
if not config.semantic_search.enabled:
return
stop_event = mp.Event()
def receiveSignal(signalNumber: int, frame: Optional[FrameType]) -> None:
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = "process:embeddings_manager"
setproctitle("frigate.embeddings_manager")
listen()
# Configure Frigate DB
db = SqliteVecQueueDatabase(
config.database.path,
pragmas={
"auto_vacuum": "FULL", # Does not defragment database
"cache_size": -512 * 1000, # 512MB of cache
"synchronous": "NORMAL", # Safe when using WAL https://www.sqlite.org/pragma.html#pragma_synchronous
},
timeout=max(60, 10 * len([c for c in config.cameras.values() if c.enabled])),
load_vec_extension=True,
)
models = [Event]
db.bind(models)
maintainer = EmbeddingMaintainer(
db,
config,
stop_event,
)
maintainer.start()
class EmbeddingsContext:
def __init__(self, db: SqliteVecQueueDatabase):
self.db = db
self.thumb_stats = ZScoreNormalization()
self.desc_stats = ZScoreNormalization()
self.requestor = EmbeddingsRequestor()
# load stats from disk
try:
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "r") as f:
data = json.loads(f.read())
self.thumb_stats.from_dict(data["thumb_stats"])
self.desc_stats.from_dict(data["desc_stats"])
except FileNotFoundError:
pass
def stop(self):
"""Write the stats to disk as JSON on exit."""
contents = {
"thumb_stats": self.thumb_stats.to_dict(),
"desc_stats": self.desc_stats.to_dict(),
}
with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "w") as f:
json.dump(contents, f)
self.requestor.stop()
def search_thumbnail(
self, query: Union[Event, str], event_ids: list[str] = None
) -> list[tuple[str, float]]:
if query.__class__ == Event:
cursor = self.db.execute_sql(
"""
SELECT thumbnail_embedding FROM vec_thumbnails WHERE id = ?
""",
[query.id],
)
row = cursor.fetchone() if cursor else None
if row:
query_embedding = row[0]
else:
# If no embedding found, generate it and return it
data = self.requestor.send_data(
EmbeddingsRequestEnum.embed_thumbnail.value,
{"id": str(query.id), "thumbnail": str(query.thumbnail)},
)
if not data:
return []
query_embedding = serialize(data)
else:
data = self.requestor.send_data(
EmbeddingsRequestEnum.generate_search.value, query
)
if not data:
return []
query_embedding = serialize(data)
sql_query = """
SELECT
id,
distance
FROM vec_thumbnails
WHERE thumbnail_embedding MATCH ?
AND k = 100
"""
# Add the IN clause if event_ids is provided and not empty
# this is the only filter supported by sqlite-vec as of 0.1.3
# but it seems to be broken in this version
if event_ids:
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
# order by distance DESC is not implemented in this version of sqlite-vec
# when it's implemented, we can use cosine similarity
sql_query += " ORDER BY distance"
parameters = [query_embedding] + event_ids if event_ids else [query_embedding]
results = self.db.execute_sql(sql_query, parameters).fetchall()
return results
def search_description(
self, query_text: str, event_ids: list[str] = None
) -> list[tuple[str, float]]:
data = self.requestor.send_data(
EmbeddingsRequestEnum.generate_search.value, query_text
)
if not data:
return []
query_embedding = serialize(data)
# Prepare the base SQL query
sql_query = """
SELECT
id,
distance
FROM vec_descriptions
WHERE description_embedding MATCH ?
AND k = 100
"""
# Add the IN clause if event_ids is provided and not empty
# this is the only filter supported by sqlite-vec as of 0.1.3
# but it seems to be broken in this version
if event_ids:
sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids)))
# order by distance DESC is not implemented in this version of sqlite-vec
# when it's implemented, we can use cosine similarity
sql_query += " ORDER BY distance"
parameters = [query_embedding] + event_ids if event_ids else [query_embedding]
results = self.db.execute_sql(sql_query, parameters).fetchall()
return results
def register_face(self, face_name: str, image_data: bytes) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.register_face.value,
{
"face_name": face_name,
"image": base64.b64encode(image_data).decode("ASCII"),
},
)
def get_face_ids(self, name: str) -> list[str]:
sql_query = f"""
SELECT
id
FROM vec_descriptions
WHERE id LIKE '%{name}%'
"""
return self.db.execute_sql(sql_query).fetchall()
def delete_face_ids(self, ids: list[str]) -> None:
self.db.delete_embeddings_face(ids)
def update_description(self, event_id: str, description: str) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.embed_description.value,
{"id": event_id, "description": description},
)