mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-09 00:17:00 +01:00
c7c8575c9b
* Start working on bird processor * Initial setup for bird processing * Improvements to handling * Get classification working * Cleanup classification * Add classification config * Update sort
155 lines
5.0 KiB
Python
155 lines
5.0 KiB
Python
"""Handle processing images to classify birds."""
|
|
|
|
import logging
|
|
import os
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import requests
|
|
|
|
from frigate.config import FrigateConfig
|
|
from frigate.const import FRIGATE_LOCALHOST, MODEL_CACHE_DIR
|
|
from frigate.util.object import calculate_region
|
|
|
|
from ..types import DataProcessorMetrics
|
|
from .api import RealTimeProcessorApi
|
|
|
|
try:
|
|
from tflite_runtime.interpreter import Interpreter
|
|
except ModuleNotFoundError:
|
|
from tensorflow.lite.python.interpreter import Interpreter
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BirdProcessor(RealTimeProcessorApi):
|
|
def __init__(self, config: FrigateConfig, metrics: DataProcessorMetrics):
|
|
super().__init__(config, metrics)
|
|
self.interpreter: Interpreter = None
|
|
self.tensor_input_details: dict[str, any] = None
|
|
self.tensor_output_details: dict[str, any] = None
|
|
self.detected_birds: dict[str, float] = {}
|
|
self.labelmap: dict[int, str] = {}
|
|
|
|
download_path = os.path.join(MODEL_CACHE_DIR, "bird")
|
|
self.model_files = {
|
|
"bird.tflite": "https://raw.githubusercontent.com/google-coral/test_data/master/mobilenet_v2_1.0_224_inat_bird_quant.tflite",
|
|
"birdmap.txt": "https://raw.githubusercontent.com/google-coral/test_data/master/inat_bird_labels.txt",
|
|
}
|
|
|
|
if not all(
|
|
os.path.exists(os.path.join(download_path, n))
|
|
for n in self.model_files.keys()
|
|
):
|
|
# conditionally import ModelDownloader
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
self.downloader = ModelDownloader(
|
|
model_name="bird",
|
|
download_path=download_path,
|
|
file_names=self.model_files.keys(),
|
|
download_func=self.__download_models,
|
|
complete_func=self.__build_detector,
|
|
)
|
|
self.downloader.ensure_model_files()
|
|
else:
|
|
self.__build_detector()
|
|
|
|
def __download_models(self, path: str) -> None:
|
|
try:
|
|
file_name = os.path.basename(path)
|
|
|
|
# conditionally import ModelDownloader
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
ModelDownloader.download_from_url(self.model_files[file_name], path)
|
|
except Exception as e:
|
|
logger.error(f"Failed to download {path}: {e}")
|
|
|
|
def __build_detector(self) -> None:
|
|
self.interpreter = Interpreter(
|
|
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
|
num_threads=2,
|
|
)
|
|
self.interpreter.allocate_tensors()
|
|
self.tensor_input_details = self.interpreter.get_input_details()
|
|
self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
|
i = 0
|
|
|
|
with open(os.path.join(MODEL_CACHE_DIR, "bird/birdmap.txt")) as f:
|
|
line = f.readline()
|
|
while line:
|
|
start = line.find("(")
|
|
end = line.find(")")
|
|
self.labelmap[i] = line[start + 1 : end]
|
|
i += 1
|
|
line = f.readline()
|
|
|
|
def process_frame(self, obj_data, frame):
|
|
if obj_data["label"] != "bird":
|
|
return
|
|
|
|
x, y, x2, y2 = calculate_region(
|
|
frame.shape,
|
|
obj_data["box"][0],
|
|
obj_data["box"][1],
|
|
obj_data["box"][2],
|
|
obj_data["box"][3],
|
|
224,
|
|
1.0,
|
|
)
|
|
|
|
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
|
input = rgb[
|
|
y:y2,
|
|
x:x2,
|
|
]
|
|
|
|
cv2.imwrite("/media/frigate/test_class.png", input)
|
|
|
|
input = np.expand_dims(input, axis=0)
|
|
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
|
self.interpreter.invoke()
|
|
res: np.ndarray = self.interpreter.get_tensor(
|
|
self.tensor_output_details[0]["index"]
|
|
)[0]
|
|
probs = res / res.sum(axis=0)
|
|
best_id = np.argmax(probs)
|
|
|
|
if best_id == 964:
|
|
logger.debug("No bird classification was detected.")
|
|
return
|
|
|
|
score = round(probs[best_id], 2)
|
|
|
|
if score < self.config.classification.bird.threshold:
|
|
logger.debug(f"Score {score} is not above required threshold")
|
|
return
|
|
|
|
previous_score = self.detected_birds.get(obj_data["id"], 0.0)
|
|
|
|
if score <= previous_score:
|
|
logger.debug(f"Score {score} is worse than previous score {previous_score}")
|
|
return
|
|
|
|
resp = requests.post(
|
|
f"{FRIGATE_LOCALHOST}/api/events/{obj_data['id']}/sub_label",
|
|
json={
|
|
"camera": obj_data.get("camera"),
|
|
"subLabel": self.labelmap[best_id],
|
|
"subLabelScore": score,
|
|
},
|
|
)
|
|
|
|
if resp.status_code == 200:
|
|
self.detected_birds[obj_data["id"]] = score
|
|
|
|
def handle_request(self, request_data):
|
|
return None
|
|
|
|
def expire_object(self, object_id):
|
|
if object_id in self.detected_birds:
|
|
self.detected_birds.pop(object_id)
|