mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			411 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import random
 | |
| import string
 | |
| 
 | |
| import numpy as np
 | |
| from norfair import (
 | |
|     Detection,
 | |
|     Drawable,
 | |
|     OptimizedKalmanFilterFactory,
 | |
|     Tracker,
 | |
|     draw_boxes,
 | |
| )
 | |
| from norfair.drawing.drawer import Drawer
 | |
| 
 | |
| from frigate.camera import PTZMetrics
 | |
| from frigate.config import CameraConfig
 | |
| from frigate.ptz.autotrack import PtzMotionEstimator
 | |
| from frigate.track import ObjectTracker
 | |
| from frigate.util.image import intersection_over_union
 | |
| from frigate.util.object import average_boxes, median_of_boxes
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| THRESHOLD_KNOWN_ACTIVE_IOU = 0.2
 | |
| THRESHOLD_STATIONARY_CHECK_IOU = 0.6
 | |
| THRESHOLD_ACTIVE_CHECK_IOU = 0.9
 | |
| MAX_STATIONARY_HISTORY = 10
 | |
| 
 | |
| 
 | |
| # Normalizes distance from estimate relative to object size
 | |
| # Other ideas:
 | |
| # - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
 | |
| # - could be variable based on time since last_detection
 | |
| # - include estimated velocity in the distance (car driving by of a parked car)
 | |
| # - include some visual similarity factor in the distance for occlusions
 | |
| def distance(detection: np.array, estimate: np.array) -> float:
 | |
|     # ultimately, this should try and estimate distance in 3-dimensional space
 | |
|     # consider change in location, width, and height
 | |
| 
 | |
|     estimate_dim = np.diff(estimate, axis=0).flatten()
 | |
|     detection_dim = np.diff(detection, axis=0).flatten()
 | |
| 
 | |
|     # get bottom center positions
 | |
|     detection_position = np.array(
 | |
|         [np.average(detection[:, 0]), np.max(detection[:, 1])]
 | |
|     )
 | |
|     estimate_position = np.array([np.average(estimate[:, 0]), np.max(estimate[:, 1])])
 | |
| 
 | |
|     distance = (detection_position - estimate_position).astype(float)
 | |
|     # change in x relative to w
 | |
|     distance[0] /= estimate_dim[0]
 | |
|     # change in y relative to h
 | |
|     distance[1] /= estimate_dim[1]
 | |
| 
 | |
|     # get ratio of widths and heights
 | |
|     # normalize to 1
 | |
|     widths = np.sort([estimate_dim[0], detection_dim[0]])
 | |
|     heights = np.sort([estimate_dim[1], detection_dim[1]])
 | |
|     width_ratio = widths[1] / widths[0] - 1.0
 | |
|     height_ratio = heights[1] / heights[0] - 1.0
 | |
| 
 | |
|     # change vector is relative x,y change and w,h ratio
 | |
|     change = np.append(distance, np.array([width_ratio, height_ratio]))
 | |
| 
 | |
|     # calculate euclidean distance of the change vector
 | |
|     return np.linalg.norm(change)
 | |
| 
 | |
| 
 | |
| def frigate_distance(detection: Detection, tracked_object) -> float:
 | |
|     return distance(detection.points, tracked_object.estimate)
 | |
| 
 | |
| 
 | |
| class NorfairTracker(ObjectTracker):
 | |
|     def __init__(
 | |
|         self,
 | |
|         config: CameraConfig,
 | |
|         ptz_metrics: PTZMetrics,
 | |
|     ):
 | |
|         self.tracked_objects = {}
 | |
|         self.untracked_object_boxes: list[list[int]] = []
 | |
|         self.disappeared = {}
 | |
|         self.positions = {}
 | |
|         self.stationary_box_history: dict[str, list[list[int, int, int, int]]] = {}
 | |
|         self.camera_config = config
 | |
|         self.detect_config = config.detect
 | |
|         self.ptz_metrics = ptz_metrics
 | |
|         self.ptz_motion_estimator = {}
 | |
|         self.camera_name = config.name
 | |
|         self.track_id_map = {}
 | |
|         # TODO: could also initialize a tracker per object class if there
 | |
|         #       was a good reason to have different distance calculations
 | |
|         self.tracker = Tracker(
 | |
|             distance_function=frigate_distance,
 | |
|             distance_threshold=2.5,
 | |
|             initialization_delay=self.detect_config.min_initialized,
 | |
|             hit_counter_max=self.detect_config.max_disappeared,
 | |
|             # use default filter factory with custom values
 | |
|             # R is the multiplier for the sensor measurement noise matrix, default of 4.0
 | |
|             # lowering R means that we trust the position of the bounding boxes more
 | |
|             # testing shows that the prediction was being relied on a bit too much
 | |
|             # TODO: could use different kalman filter values along with
 | |
|             #       the different tracker per object class
 | |
|             filter_factory=OptimizedKalmanFilterFactory(R=3.4),
 | |
|         )
 | |
|         if self.ptz_metrics.autotracker_enabled.value:
 | |
|             self.ptz_motion_estimator = PtzMotionEstimator(
 | |
|                 self.camera_config, self.ptz_metrics
 | |
|             )
 | |
| 
 | |
|     def register(self, track_id, obj):
 | |
|         rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
 | |
|         id = f"{obj['frame_time']}-{rand_id}"
 | |
|         self.track_id_map[track_id] = id
 | |
|         obj["id"] = id
 | |
|         obj["start_time"] = obj["frame_time"]
 | |
|         obj["motionless_count"] = 0
 | |
|         obj["position_changes"] = 0
 | |
|         obj["score_history"] = [
 | |
|             p.data["score"]
 | |
|             for p in next(
 | |
|                 (o for o in self.tracker.tracked_objects if o.global_id == track_id)
 | |
|             ).past_detections
 | |
|         ]
 | |
|         self.tracked_objects[id] = obj
 | |
|         self.disappeared[id] = 0
 | |
|         self.positions[id] = {
 | |
|             "xmins": [],
 | |
|             "ymins": [],
 | |
|             "xmaxs": [],
 | |
|             "ymaxs": [],
 | |
|             "xmin": 0,
 | |
|             "ymin": 0,
 | |
|             "xmax": self.detect_config.width,
 | |
|             "ymax": self.detect_config.height,
 | |
|         }
 | |
|         self.stationary_box_history[id] = []
 | |
| 
 | |
|     def deregister(self, id, track_id):
 | |
|         del self.tracked_objects[id]
 | |
|         del self.disappeared[id]
 | |
|         self.tracker.tracked_objects = [
 | |
|             o for o in self.tracker.tracked_objects if o.global_id != track_id
 | |
|         ]
 | |
|         del self.track_id_map[track_id]
 | |
| 
 | |
|     # tracks the current position of the object based on the last N bounding boxes
 | |
|     # returns False if the object has moved outside its previous position
 | |
|     def update_position(self, id: str, box: list[int, int, int, int], stationary: bool):
 | |
|         xmin, ymin, xmax, ymax = box
 | |
|         position = self.positions[id]
 | |
|         self.stationary_box_history[id].append(box)
 | |
| 
 | |
|         if len(self.stationary_box_history[id]) > MAX_STATIONARY_HISTORY:
 | |
|             self.stationary_box_history[id] = self.stationary_box_history[id][
 | |
|                 -MAX_STATIONARY_HISTORY:
 | |
|             ]
 | |
| 
 | |
|         avg_iou = intersection_over_union(
 | |
|             box, average_boxes(self.stationary_box_history[id])
 | |
|         )
 | |
| 
 | |
|         # object has minimal or zero iou
 | |
|         # assume object is active
 | |
|         if avg_iou < THRESHOLD_KNOWN_ACTIVE_IOU:
 | |
|             self.positions[id] = {
 | |
|                 "xmins": [xmin],
 | |
|                 "ymins": [ymin],
 | |
|                 "xmaxs": [xmax],
 | |
|                 "ymaxs": [ymax],
 | |
|                 "xmin": xmin,
 | |
|                 "ymin": ymin,
 | |
|                 "xmax": xmax,
 | |
|                 "ymax": ymax,
 | |
|             }
 | |
|             return False
 | |
| 
 | |
|         threshold = (
 | |
|             THRESHOLD_STATIONARY_CHECK_IOU if stationary else THRESHOLD_ACTIVE_CHECK_IOU
 | |
|         )
 | |
| 
 | |
|         # object has iou below threshold, check median to reduce outliers
 | |
|         if avg_iou < threshold:
 | |
|             median_iou = intersection_over_union(
 | |
|                 (
 | |
|                     position["xmin"],
 | |
|                     position["ymin"],
 | |
|                     position["xmax"],
 | |
|                     position["ymax"],
 | |
|                 ),
 | |
|                 median_of_boxes(self.stationary_box_history[id]),
 | |
|             )
 | |
| 
 | |
|             # if the median iou drops below the threshold
 | |
|             # assume object is no longer stationary
 | |
|             if median_iou < threshold:
 | |
|                 self.positions[id] = {
 | |
|                     "xmins": [xmin],
 | |
|                     "ymins": [ymin],
 | |
|                     "xmaxs": [xmax],
 | |
|                     "ymaxs": [ymax],
 | |
|                     "xmin": xmin,
 | |
|                     "ymin": ymin,
 | |
|                     "xmax": xmax,
 | |
|                     "ymax": ymax,
 | |
|                 }
 | |
|                 return False
 | |
| 
 | |
|         # if there are less than 10 entries for the position, add the bounding box
 | |
|         # and recompute the position box
 | |
|         if len(position["xmins"]) < 10:
 | |
|             position["xmins"].append(xmin)
 | |
|             position["ymins"].append(ymin)
 | |
|             position["xmaxs"].append(xmax)
 | |
|             position["ymaxs"].append(ymax)
 | |
|             # by using percentiles here, we hopefully remove outliers
 | |
|             position["xmin"] = np.percentile(position["xmins"], 15)
 | |
|             position["ymin"] = np.percentile(position["ymins"], 15)
 | |
|             position["xmax"] = np.percentile(position["xmaxs"], 85)
 | |
|             position["ymax"] = np.percentile(position["ymaxs"], 85)
 | |
| 
 | |
|         return True
 | |
| 
 | |
|     def is_expired(self, id):
 | |
|         obj = self.tracked_objects[id]
 | |
|         # get the max frames for this label type or the default
 | |
|         max_frames = self.detect_config.stationary.max_frames.objects.get(
 | |
|             obj["label"], self.detect_config.stationary.max_frames.default
 | |
|         )
 | |
| 
 | |
|         # if there is no max_frames for this label type, continue
 | |
|         if max_frames is None:
 | |
|             return False
 | |
| 
 | |
|         # if the object has exceeded the max_frames setting, deregister
 | |
|         if (
 | |
|             obj["motionless_count"] - self.detect_config.stationary.threshold
 | |
|             > max_frames
 | |
|         ):
 | |
|             return True
 | |
| 
 | |
|         return False
 | |
| 
 | |
|     def update(self, track_id, obj):
 | |
|         id = self.track_id_map[track_id]
 | |
|         self.disappeared[id] = 0
 | |
|         stationary = (
 | |
|             self.tracked_objects[id]["motionless_count"]
 | |
|             >= self.detect_config.stationary.threshold
 | |
|         )
 | |
|         # update the motionless count if the object has not moved to a new position
 | |
|         if self.update_position(id, obj["box"], stationary):
 | |
|             self.tracked_objects[id]["motionless_count"] += 1
 | |
|             if self.is_expired(id):
 | |
|                 self.deregister(id, track_id)
 | |
|                 return
 | |
|         else:
 | |
|             # register the first position change and then only increment if
 | |
|             # the object was previously stationary
 | |
|             if (
 | |
|                 self.tracked_objects[id]["position_changes"] == 0
 | |
|                 or self.tracked_objects[id]["motionless_count"]
 | |
|                 >= self.detect_config.stationary.threshold
 | |
|             ):
 | |
|                 self.tracked_objects[id]["position_changes"] += 1
 | |
|             self.tracked_objects[id]["motionless_count"] = 0
 | |
|             self.stationary_box_history[id] = []
 | |
| 
 | |
|         self.tracked_objects[id].update(obj)
 | |
| 
 | |
|     def update_frame_times(self, frame_name: str, frame_time: float):
 | |
|         # if the object was there in the last frame, assume it's still there
 | |
|         detections = [
 | |
|             (
 | |
|                 obj["label"],
 | |
|                 obj["score"],
 | |
|                 obj["box"],
 | |
|                 obj["area"],
 | |
|                 obj["ratio"],
 | |
|                 obj["region"],
 | |
|             )
 | |
|             for id, obj in self.tracked_objects.items()
 | |
|             if self.disappeared[id] == 0
 | |
|         ]
 | |
|         self.match_and_update(frame_name, frame_time, detections=detections)
 | |
| 
 | |
|     def match_and_update(
 | |
|         self, frame_name: str, frame_time: float, detections: list[dict[str, any]]
 | |
|     ):
 | |
|         norfair_detections = []
 | |
| 
 | |
|         for obj in detections:
 | |
|             # centroid is used for other things downstream
 | |
|             centroid_x = int((obj[2][0] + obj[2][2]) / 2.0)
 | |
|             centroid_y = int((obj[2][1] + obj[2][3]) / 2.0)
 | |
| 
 | |
|             # track based on top,left and bottom,right corners instead of centroid
 | |
|             points = np.array([[obj[2][0], obj[2][1]], [obj[2][2], obj[2][3]]])
 | |
| 
 | |
|             norfair_detections.append(
 | |
|                 Detection(
 | |
|                     points=points,
 | |
|                     label=obj[0],
 | |
|                     data={
 | |
|                         "label": obj[0],
 | |
|                         "score": obj[1],
 | |
|                         "box": obj[2],
 | |
|                         "area": obj[3],
 | |
|                         "ratio": obj[4],
 | |
|                         "region": obj[5],
 | |
|                         "frame_time": frame_time,
 | |
|                         "centroid": (centroid_x, centroid_y),
 | |
|                     },
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         coord_transformations = None
 | |
| 
 | |
|         if self.ptz_metrics.autotracker_enabled.value:
 | |
|             # we must have been enabled by mqtt, so set up the estimator
 | |
|             if not self.ptz_motion_estimator:
 | |
|                 self.ptz_motion_estimator = PtzMotionEstimator(
 | |
|                     self.camera_config, self.ptz_metrics
 | |
|                 )
 | |
| 
 | |
|             coord_transformations = self.ptz_motion_estimator.motion_estimator(
 | |
|                 detections, frame_name, frame_time, self.camera_name
 | |
|             )
 | |
| 
 | |
|         tracked_objects = self.tracker.update(
 | |
|             detections=norfair_detections, coord_transformations=coord_transformations
 | |
|         )
 | |
| 
 | |
|         # update or create new tracks
 | |
|         active_ids = []
 | |
|         for t in tracked_objects:
 | |
|             estimate = tuple(t.estimate.flatten().astype(int))
 | |
|             # keep the estimate within the bounds of the image
 | |
|             estimate = (
 | |
|                 max(0, estimate[0]),
 | |
|                 max(0, estimate[1]),
 | |
|                 min(self.detect_config.width - 1, estimate[2]),
 | |
|                 min(self.detect_config.height - 1, estimate[3]),
 | |
|             )
 | |
|             obj = {
 | |
|                 **t.last_detection.data,
 | |
|                 "estimate": estimate,
 | |
|                 "estimate_velocity": t.estimate_velocity,
 | |
|             }
 | |
|             active_ids.append(t.global_id)
 | |
|             if t.global_id not in self.track_id_map:
 | |
|                 self.register(t.global_id, obj)
 | |
|             # if there wasn't a detection in this frame, increment disappeared
 | |
|             elif t.last_detection.data["frame_time"] != frame_time:
 | |
|                 id = self.track_id_map[t.global_id]
 | |
|                 self.disappeared[id] += 1
 | |
|                 # sometimes the estimate gets way off
 | |
|                 # only update if the upper left corner is actually upper left
 | |
|                 if estimate[0] < estimate[2] and estimate[1] < estimate[3]:
 | |
|                     self.tracked_objects[id]["estimate"] = obj["estimate"]
 | |
|             # else update it
 | |
|             else:
 | |
|                 self.update(t.global_id, obj)
 | |
| 
 | |
|         # clear expired tracks
 | |
|         expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
 | |
|         for e_id in expired_ids:
 | |
|             self.deregister(self.track_id_map[e_id], e_id)
 | |
| 
 | |
|         # update list of object boxes that don't have a tracked object yet
 | |
|         tracked_object_boxes = [obj["box"] for obj in self.tracked_objects.values()]
 | |
|         self.untracked_object_boxes = [
 | |
|             o[2] for o in detections if o[2] not in tracked_object_boxes
 | |
|         ]
 | |
| 
 | |
|     def debug_draw(self, frame, frame_time):
 | |
|         active_detections = [
 | |
|             Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
 | |
|             for obj in self.tracker.tracked_objects
 | |
|             if obj.last_detection.data["frame_time"] == frame_time
 | |
|         ]
 | |
|         missing_detections = [
 | |
|             Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
 | |
|             for obj in self.tracker.tracked_objects
 | |
|             if obj.last_detection.data["frame_time"] != frame_time
 | |
|         ]
 | |
|         # draw the estimated bounding box
 | |
|         draw_boxes(frame, self.tracker.tracked_objects, color="green", draw_ids=True)
 | |
|         # draw the detections that were detected in the current frame
 | |
|         draw_boxes(frame, active_detections, color="blue", draw_ids=True)
 | |
|         # draw the detections that are missing in the current frame
 | |
|         draw_boxes(frame, missing_detections, color="red", draw_ids=True)
 | |
| 
 | |
|         # draw the distance calculation for the last detection
 | |
|         # estimate vs detection
 | |
|         for obj in self.tracker.tracked_objects:
 | |
|             ld = obj.last_detection
 | |
|             # bottom right
 | |
|             text_anchor = (
 | |
|                 ld.points[1, 0],
 | |
|                 ld.points[1, 1],
 | |
|             )
 | |
|             frame = Drawer.text(
 | |
|                 frame,
 | |
|                 f"{obj.id}: {str(obj.last_distance)}",
 | |
|                 position=text_anchor,
 | |
|                 size=None,
 | |
|                 color=(255, 0, 0),
 | |
|                 thickness=None,
 | |
|             )
 |