mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			250 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
 | 
						|
import cv2
 | 
						|
import imutils
 | 
						|
import numpy as np
 | 
						|
from scipy.ndimage import gaussian_filter
 | 
						|
 | 
						|
from frigate.camera import PTZMetrics
 | 
						|
from frigate.comms.config_updater import ConfigSubscriber
 | 
						|
from frigate.config import MotionConfig
 | 
						|
from frigate.motion import MotionDetector
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
class ImprovedMotionDetector(MotionDetector):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        frame_shape,
 | 
						|
        config: MotionConfig,
 | 
						|
        fps: int,
 | 
						|
        ptz_metrics: PTZMetrics = None,
 | 
						|
        name="improved",
 | 
						|
        blur_radius=1,
 | 
						|
        interpolation=cv2.INTER_NEAREST,
 | 
						|
        contrast_frame_history=50,
 | 
						|
    ):
 | 
						|
        self.name = name
 | 
						|
        self.config = config
 | 
						|
        self.frame_shape = frame_shape
 | 
						|
        self.resize_factor = frame_shape[0] / config.frame_height
 | 
						|
        self.motion_frame_size = (
 | 
						|
            config.frame_height,
 | 
						|
            config.frame_height * frame_shape[1] // frame_shape[0],
 | 
						|
        )
 | 
						|
        self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
 | 
						|
        self.motion_frame_count = 0
 | 
						|
        self.frame_counter = 0
 | 
						|
        resized_mask = cv2.resize(
 | 
						|
            config.mask,
 | 
						|
            dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
 | 
						|
            interpolation=cv2.INTER_AREA,
 | 
						|
        )
 | 
						|
        self.mask = np.where(resized_mask == [0])
 | 
						|
        self.save_images = False
 | 
						|
        self.calibrating = True
 | 
						|
        self.blur_radius = blur_radius
 | 
						|
        self.interpolation = interpolation
 | 
						|
        self.contrast_values = np.zeros((contrast_frame_history, 2), np.uint8)
 | 
						|
        self.contrast_values[:, 1:2] = 255
 | 
						|
        self.contrast_values_index = 0
 | 
						|
        self.config_subscriber = ConfigSubscriber(f"config/motion/{name}", True)
 | 
						|
        self.ptz_metrics = ptz_metrics
 | 
						|
        self.last_stop_time = None
 | 
						|
 | 
						|
    def is_calibrating(self):
 | 
						|
        return self.calibrating
 | 
						|
 | 
						|
    def detect(self, frame):
 | 
						|
        motion_boxes = []
 | 
						|
 | 
						|
        # check for updated motion config
 | 
						|
        _, updated_motion_config = self.config_subscriber.check_for_update()
 | 
						|
 | 
						|
        if updated_motion_config:
 | 
						|
            self.config = updated_motion_config
 | 
						|
 | 
						|
        if not self.config.enabled:
 | 
						|
            return motion_boxes
 | 
						|
 | 
						|
        # if ptz motor is moving from autotracking, quickly return
 | 
						|
        # a single box that is 80% of the frame
 | 
						|
        if (
 | 
						|
            self.ptz_metrics.autotracker_enabled.value
 | 
						|
            and not self.ptz_metrics.motor_stopped.is_set()
 | 
						|
        ):
 | 
						|
            return [
 | 
						|
                (
 | 
						|
                    int(self.frame_shape[1] * 0.1),
 | 
						|
                    int(self.frame_shape[0] * 0.1),
 | 
						|
                    int(self.frame_shape[1] * 0.9),
 | 
						|
                    int(self.frame_shape[0] * 0.9),
 | 
						|
                )
 | 
						|
            ]
 | 
						|
 | 
						|
        gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
 | 
						|
 | 
						|
        # resize frame
 | 
						|
        resized_frame = cv2.resize(
 | 
						|
            gray,
 | 
						|
            dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
 | 
						|
            interpolation=self.interpolation,
 | 
						|
        )
 | 
						|
 | 
						|
        if self.save_images:
 | 
						|
            resized_saved = resized_frame.copy()
 | 
						|
 | 
						|
        # Improve contrast
 | 
						|
        if self.config.improve_contrast:
 | 
						|
            # TODO tracking moving average of min/max to avoid sudden contrast changes
 | 
						|
            min_value = np.percentile(resized_frame, 4).astype(np.uint8)
 | 
						|
            max_value = np.percentile(resized_frame, 96).astype(np.uint8)
 | 
						|
            # skip contrast calcs if the image is a single color
 | 
						|
            if min_value < max_value:
 | 
						|
                # keep track of the last 50 contrast values
 | 
						|
                self.contrast_values[self.contrast_values_index] = [
 | 
						|
                    min_value,
 | 
						|
                    max_value,
 | 
						|
                ]
 | 
						|
                self.contrast_values_index += 1
 | 
						|
                if self.contrast_values_index == len(self.contrast_values):
 | 
						|
                    self.contrast_values_index = 0
 | 
						|
 | 
						|
                avg_min, avg_max = np.mean(self.contrast_values, axis=0)
 | 
						|
 | 
						|
                resized_frame = np.clip(resized_frame, avg_min, avg_max)
 | 
						|
                resized_frame = (
 | 
						|
                    ((resized_frame - avg_min) / (avg_max - avg_min)) * 255
 | 
						|
                ).astype(np.uint8)
 | 
						|
 | 
						|
        if self.save_images:
 | 
						|
            contrasted_saved = resized_frame.copy()
 | 
						|
 | 
						|
        # mask frame
 | 
						|
        # this has to come after contrast improvement
 | 
						|
        # Setting masked pixels to zero, to match the average frame at startup
 | 
						|
        resized_frame[self.mask] = [0]
 | 
						|
 | 
						|
        resized_frame = gaussian_filter(resized_frame, sigma=1, radius=self.blur_radius)
 | 
						|
 | 
						|
        if self.save_images:
 | 
						|
            blurred_saved = resized_frame.copy()
 | 
						|
 | 
						|
        if self.save_images or self.calibrating:
 | 
						|
            self.frame_counter += 1
 | 
						|
        # compare to average
 | 
						|
        frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
 | 
						|
 | 
						|
        # compute the threshold image for the current frame
 | 
						|
        thresh = cv2.threshold(
 | 
						|
            frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
 | 
						|
        )[1]
 | 
						|
 | 
						|
        # dilate the thresholded image to fill in holes, then find contours
 | 
						|
        # on thresholded image
 | 
						|
        thresh_dilated = cv2.dilate(thresh, None, iterations=1)
 | 
						|
        contours = cv2.findContours(
 | 
						|
            thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
 | 
						|
        )
 | 
						|
        contours = imutils.grab_contours(contours)
 | 
						|
 | 
						|
        # loop over the contours
 | 
						|
        total_contour_area = 0
 | 
						|
        for c in contours:
 | 
						|
            # if the contour is big enough, count it as motion
 | 
						|
            contour_area = cv2.contourArea(c)
 | 
						|
            total_contour_area += contour_area
 | 
						|
            if contour_area > self.config.contour_area:
 | 
						|
                x, y, w, h = cv2.boundingRect(c)
 | 
						|
                motion_boxes.append(
 | 
						|
                    (
 | 
						|
                        int(x * self.resize_factor),
 | 
						|
                        int(y * self.resize_factor),
 | 
						|
                        int((x + w) * self.resize_factor),
 | 
						|
                        int((y + h) * self.resize_factor),
 | 
						|
                    )
 | 
						|
                )
 | 
						|
 | 
						|
        pct_motion = total_contour_area / (
 | 
						|
            self.motion_frame_size[0] * self.motion_frame_size[1]
 | 
						|
        )
 | 
						|
 | 
						|
        # check if the motor has just stopped from autotracking
 | 
						|
        # if so, reassign the average to the current frame so we begin with a new baseline
 | 
						|
        if (
 | 
						|
            # ensure we only do this for cameras with autotracking enabled
 | 
						|
            self.ptz_metrics.autotracker_enabled.value
 | 
						|
            and self.ptz_metrics.motor_stopped.is_set()
 | 
						|
            and (
 | 
						|
                self.last_stop_time is None
 | 
						|
                or self.ptz_metrics.stop_time.value != self.last_stop_time
 | 
						|
            )
 | 
						|
            # value is 0 on startup or when motor is moving
 | 
						|
            and self.ptz_metrics.stop_time.value != 0
 | 
						|
        ):
 | 
						|
            self.last_stop_time = self.ptz_metrics.stop_time.value
 | 
						|
 | 
						|
            self.avg_frame = resized_frame.astype(np.float32)
 | 
						|
            motion_boxes = []
 | 
						|
            pct_motion = 0
 | 
						|
 | 
						|
        # once the motion is less than 5% and the number of contours is < 4, assume its calibrated
 | 
						|
        if pct_motion < 0.05 and len(motion_boxes) <= 4:
 | 
						|
            self.calibrating = False
 | 
						|
 | 
						|
        # if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
 | 
						|
        if self.calibrating or pct_motion > self.config.lightning_threshold:
 | 
						|
            self.calibrating = True
 | 
						|
 | 
						|
        if self.save_images:
 | 
						|
            thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
 | 
						|
            for b in motion_boxes:
 | 
						|
                cv2.rectangle(
 | 
						|
                    thresh_dilated,
 | 
						|
                    (int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)),
 | 
						|
                    (int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)),
 | 
						|
                    (0, 0, 255),
 | 
						|
                    2,
 | 
						|
                )
 | 
						|
            frames = [
 | 
						|
                cv2.cvtColor(resized_saved, cv2.COLOR_GRAY2BGR),
 | 
						|
                cv2.cvtColor(contrasted_saved, cv2.COLOR_GRAY2BGR),
 | 
						|
                cv2.cvtColor(blurred_saved, cv2.COLOR_GRAY2BGR),
 | 
						|
                cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
 | 
						|
                cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR),
 | 
						|
                thresh_dilated,
 | 
						|
            ]
 | 
						|
            cv2.imwrite(
 | 
						|
                f"debug/frames/{self.name}-{self.frame_counter}.jpg",
 | 
						|
                (
 | 
						|
                    cv2.hconcat(frames)
 | 
						|
                    if self.frame_shape[0] > self.frame_shape[1]
 | 
						|
                    else cv2.vconcat(frames)
 | 
						|
                ),
 | 
						|
            )
 | 
						|
 | 
						|
        if len(motion_boxes) > 0:
 | 
						|
            self.motion_frame_count += 1
 | 
						|
            if self.motion_frame_count >= 10:
 | 
						|
                # only average in the current frame if the difference persists for a bit
 | 
						|
                cv2.accumulateWeighted(
 | 
						|
                    resized_frame,
 | 
						|
                    self.avg_frame,
 | 
						|
                    0.2 if self.calibrating else self.config.frame_alpha,
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            # when no motion, just keep averaging the frames together
 | 
						|
            cv2.accumulateWeighted(
 | 
						|
                resized_frame,
 | 
						|
                self.avg_frame,
 | 
						|
                0.2 if self.calibrating else self.config.frame_alpha,
 | 
						|
            )
 | 
						|
            self.motion_frame_count = 0
 | 
						|
 | 
						|
        return motion_boxes
 | 
						|
 | 
						|
    def stop(self) -> None:
 | 
						|
        """stop the motion detector."""
 | 
						|
        self.config_subscriber.stop()
 |