mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-21 20:06:12 +01:00
* fix api async/await functions * fix synaptics detector from throwing error when unused * clean up
104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import (
|
|
BaseDetectorConfig,
|
|
InputTensorEnum,
|
|
ModelTypeEnum,
|
|
)
|
|
|
|
try:
|
|
from synap import Network
|
|
from synap.postprocessor import Detector
|
|
from synap.preprocessor import Preprocessor
|
|
from synap.types import Layout, Shape
|
|
|
|
SYNAP_SUPPORT = True
|
|
except ImportError:
|
|
SYNAP_SUPPORT = False
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "synaptics"
|
|
|
|
|
|
class SynapDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
|
|
|
|
class SynapDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: SynapDetectorConfig):
|
|
if not SYNAP_SUPPORT:
|
|
logger.error(
|
|
"Error importing Synaptics SDK modules. You must use the -synaptics Docker image variant for Synaptics detector support."
|
|
)
|
|
return
|
|
|
|
try:
|
|
_, ext = os.path.splitext(detector_config.model.path)
|
|
if ext and ext != ".synap":
|
|
raise ValueError("Model path config for Synap1680 is incorrect.")
|
|
|
|
synap_network = Network(detector_config.model.path)
|
|
logger.info(f"Synap NPU loaded model: {detector_config.model.path}")
|
|
except ValueError as ve:
|
|
logger.error(f"Synap1680 setup has failed: {ve}")
|
|
raise
|
|
except Exception as e:
|
|
logger.error(f"Failed to init Synap NPU: {e}")
|
|
raise
|
|
|
|
self.width = detector_config.model.width
|
|
self.height = detector_config.model.height
|
|
self.model_type = detector_config.model.model_type
|
|
self.network = synap_network
|
|
self.network_input_details = self.network.inputs[0]
|
|
self.input_tensor_layout = detector_config.model.input_tensor
|
|
|
|
# Create Inference Engine
|
|
self.preprocessor = Preprocessor()
|
|
self.detector = Detector(score_threshold=0.4, iou_threshold=0.4)
|
|
|
|
def detect_raw(self, tensor_input: np.ndarray):
|
|
# It has only been testing for pre-converted mobilenet80 .tflite -> .synap model currently
|
|
layout = Layout.nhwc # default layout
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
if self.input_tensor_layout == InputTensorEnum.nhwc:
|
|
layout = Layout.nhwc
|
|
|
|
postprocess_data = self.preprocessor.assign(
|
|
self.network.inputs, tensor_input, Shape(tensor_input.shape), layout
|
|
)
|
|
output_tensor_obj = self.network.predict()
|
|
output = self.detector.process(output_tensor_obj, postprocess_data)
|
|
|
|
if self.model_type == ModelTypeEnum.ssd:
|
|
for i, item in enumerate(output.items):
|
|
if i == 20:
|
|
break
|
|
|
|
bb = item.bounding_box
|
|
# Convert corner coordinates to normalized [0,1] range
|
|
x1 = bb.origin.x / self.width # Top-left X
|
|
y1 = bb.origin.y / self.height # Top-left Y
|
|
x2 = (bb.origin.x + bb.size.x) / self.width # Bottom-right X
|
|
y2 = (bb.origin.y + bb.size.y) / self.height # Bottom-right Y
|
|
detections[i] = [
|
|
item.class_index,
|
|
float(item.confidence),
|
|
y1,
|
|
x1,
|
|
y2,
|
|
x2,
|
|
]
|
|
else:
|
|
logger.error(f"Unsupported model type: {self.model_type}")
|
|
return detections
|