mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* ROCm AMD/GPU based build and detector, WIP * detectors/rocm: separate yolov8 postprocessing into own function; fix box scaling; use cv2.dnn.blobForImage for preprocessing; assert on required model parameters * AMD/ROCm: add couple of more ultralytics models; comments * docker/rocm: make imported model files readable by all * docker/rocm: readme about running on AMD GPUs * docker/rocm: updated README * docker/rocm: updated README * docker/rocm: updated README * detectors/rocm: separated preprocessing functions into yolo_utils.py * detector/plugins: added onnx cpu plugin * docker/rocm: updated container with limite label sets * example detectors view * docker/rocm: updated README.md * docker/rocm: update README.md * docker/rocm: do not set HSA_OVERRIDE_GFX_VERSION at all for the general version as the empty value broke rocm * detectors: simplified/optimized yolov8_postprocess * detector/yolo_utils: indentation, remove unused variable * detectors/rocm: default option to conserve cpu usage at the expense of latency * detectors/yolo_utils: use nms to prefilter overlapping boxes if too many detected * detectors/edgetpu_tfl: add support for yolov8 * util/download_models: script to download yolov8 model files * docker/main: add download-models overlay into s6 startup * detectors/rocm: assume models are in /config/model_cache/yolov8/ * docker/rocm: compile onnx files into mxr files at startup * switch model download into bash script * detectors/rocm: automatically override HSA_OVERRIDE_GFX_VERSION for couple of known chipsets * docs: rocm detector first notes * typos * describe builds (harakas temporary) * docker/rocm: also build a version for gfx1100 * docker/rocm: use cp instead of tar * docker.rocm: remove README as it is now in detector config * frigate/detectors: renamed yolov8_preprocess->preprocess, pass input tensor element type * docker/main: use newer openvino (2023.3.0) * detectors: implement class aggregation * update yolov8 model * add openvino/yolov8 support for label aggregation * docker: remove pointless s6/timeout-up files * Revert "detectors: implement class aggregation" This reverts commitdcfe6bbf6f. * detectors/openvino: remove class aggregation * detectors: increase yolov8 postprocessing score trershold to 0.5 * docker/rocm: separate rocm distributed files into its own build stage * Update object_detectors.md * updated CODEOWNERS file for rocm * updated build names for documentation * Revert "docker/main: use newer openvino (2023.3.0)" This reverts commitdee95de908. * reverrted openvino detector * reverted edgetpu detector * scratched rocm docs from any mention of edgetpu or openvino * Update docs/docs/configuration/object_detectors.md Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py * clarified rocm example performance * Improved wording and clarified text * Mentioned rocm detector for AMD GPUs * applied ruff formating * applied ruff suggested fixes * docker/rocm: fix missing argument resulting in larger docker image sizes * docs/configuration/object_detectors: fix links to yolov8 release files --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
		
			
				
	
	
		
			84 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| 
 | |
| import cv2
 | |
| import numpy as np
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| def preprocess(tensor_input, model_input_shape, model_input_element_type):
 | |
|     model_input_shape = tuple(model_input_shape)
 | |
|     assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
 | |
|     if len(tensor_input.shape) == 3:
 | |
|         tensor_input = tensor_input[np.newaxis, :]
 | |
|     if model_input_element_type == np.uint8:
 | |
|         # nothing to do for uint8 model input
 | |
|         assert (
 | |
|             model_input_shape == tensor_input.shape
 | |
|         ), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
 | |
|         return tensor_input
 | |
|     assert (
 | |
|         model_input_element_type == np.float32
 | |
|     ), f"model_input_element_type: {model_input_element_type}"
 | |
|     # tensor_input must be nhwc
 | |
|     assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
 | |
|     if tensor_input.shape[1:3] != model_input_shape[2:4]:
 | |
|         logger.warn(
 | |
|             f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
 | |
|         )
 | |
|     # cv2.dnn.blobFromImage is faster than numpying it
 | |
|     return cv2.dnn.blobFromImage(
 | |
|         tensor_input[0],
 | |
|         1.0 / 255,
 | |
|         (model_input_shape[3], model_input_shape[2]),
 | |
|         None,
 | |
|         swapRB=False,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def yolov8_postprocess(
 | |
|     model_input_shape,
 | |
|     tensor_output,
 | |
|     box_count=20,
 | |
|     score_threshold=0.5,
 | |
|     nms_threshold=0.5,
 | |
| ):
 | |
|     model_box_count = tensor_output.shape[2]
 | |
|     probs = tensor_output[0, 4:, :]
 | |
|     all_ids = np.argmax(probs, axis=0)
 | |
|     all_confidences = probs.T[np.arange(model_box_count), all_ids]
 | |
|     all_boxes = tensor_output[0, 0:4, :].T
 | |
|     mask = all_confidences > score_threshold
 | |
|     class_ids = all_ids[mask]
 | |
|     confidences = all_confidences[mask]
 | |
|     cx, cy, w, h = all_boxes[mask].T
 | |
| 
 | |
|     if model_input_shape[3] == 3:
 | |
|         scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
 | |
|     else:
 | |
|         scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
 | |
|     detections = np.stack(
 | |
|         (
 | |
|             class_ids,
 | |
|             confidences,
 | |
|             scale_y * (cy - h / 2),
 | |
|             scale_x * (cx - w / 2),
 | |
|             scale_y * (cy + h / 2),
 | |
|             scale_x * (cx + w / 2),
 | |
|         ),
 | |
|         axis=1,
 | |
|     )
 | |
|     if detections.shape[0] > box_count:
 | |
|         # if too many detections, do nms filtering to suppress overlapping boxes
 | |
|         boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
 | |
|         indexes = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold, nms_threshold)
 | |
|         detections = detections[indexes]
 | |
|         # if still too many, trim the rest by confidence
 | |
|         if detections.shape[0] > box_count:
 | |
|             detections = detections[
 | |
|                 np.argpartition(detections[:, 1], -box_count)[-box_count:]
 | |
|             ]
 | |
|         detections = detections.copy()
 | |
|     detections.resize((box_count, 6))
 | |
|     return detections
 |