blakeblackshear.frigate/frigate/embeddings/onnx/jina_v2_embedding.py
Josh Hawkins d0e9bcbfdc
Add ability to use Jina CLIP V2 for semantic search (#16826)
* add wheels

* move extra index url to bottom

* config model option

* add postprocess

* fix config

* jina v2 embedding class

* use jina v2 in embeddings

* fix ov inference

* frontend

* update reference config

* revert device

* fix truncation

* return np tensors

* use correct embeddings from inference

* manual preprocess

* clean up

* docs

* lower batch size for v2 only

* docs clarity

* wording
2025-02-26 07:58:25 -07:00

232 lines
8.5 KiB
Python

"""JinaV2 Embeddings."""
import io
import logging
import os
import numpy as np
from PIL import Image
from transformers import AutoTokenizer
from transformers.utils.logging import disable_progress_bar, set_verbosity_error
from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import MODEL_CACHE_DIR, UPDATE_MODEL_STATE
from frigate.types import ModelStatusTypesEnum
from frigate.util.downloader import ModelDownloader
from .base_embedding import BaseEmbedding
from .runner import ONNXModelRunner
# disables the progress bar and download logging for downloading tokenizers and image processors
disable_progress_bar()
set_verbosity_error()
logger = logging.getLogger(__name__)
class JinaV2Embedding(BaseEmbedding):
def __init__(
self,
model_size: str,
requestor: InterProcessRequestor,
device: str = "AUTO",
embedding_type: str = None,
):
model_file = (
"model_fp16.onnx" if model_size == "large" else "model_quantized.onnx"
)
super().__init__(
model_name="jinaai/jina-clip-v2",
model_file=model_file,
download_urls={
model_file: f"https://huggingface.co/jinaai/jina-clip-v2/resolve/main/onnx/{model_file}",
"preprocessor_config.json": "https://huggingface.co/jinaai/jina-clip-v2/resolve/main/preprocessor_config.json",
},
)
self.tokenizer_file = "tokenizer"
self.embedding_type = embedding_type
self.requestor = requestor
self.model_size = model_size
self.device = device
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
self.tokenizer = None
self.image_processor = None
self.runner = None
files_names = list(self.download_urls.keys()) + [self.tokenizer_file]
if not all(
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
):
logger.debug(f"starting model download for {self.model_name}")
self.downloader = ModelDownloader(
model_name=self.model_name,
download_path=self.download_path,
file_names=files_names,
download_func=self._download_model,
)
self.downloader.ensure_model_files()
else:
self.downloader = None
ModelDownloader.mark_files_state(
self.requestor,
self.model_name,
files_names,
ModelStatusTypesEnum.downloaded,
)
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
def _download_model(self, path: str):
try:
file_name = os.path.basename(path)
if file_name in self.download_urls:
ModelDownloader.download_from_url(self.download_urls[file_name], path)
elif file_name == self.tokenizer_file:
if not os.path.exists(os.path.join(path, self.model_name)):
logger.info(f"Downloading {self.model_name} tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
cache_dir=os.path.join(
MODEL_CACHE_DIR, self.model_name, "tokenizer"
),
clean_up_tokenization_spaces=True,
)
tokenizer.save_pretrained(path)
self.requestor.send_data(
UPDATE_MODEL_STATE,
{
"model": f"{self.model_name}-{file_name}",
"state": ModelStatusTypesEnum.downloaded,
},
)
except Exception:
self.requestor.send_data(
UPDATE_MODEL_STATE,
{
"model": f"{self.model_name}-{file_name}",
"state": ModelStatusTypesEnum.error,
},
)
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
tokenizer_path = os.path.join(
f"{MODEL_CACHE_DIR}/{self.model_name}/tokenizer"
)
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
cache_dir=tokenizer_path,
trust_remote_code=True,
clean_up_tokenization_spaces=True,
)
self.runner = ONNXModelRunner(
os.path.join(self.download_path, self.model_file),
self.device,
self.model_size,
)
def _preprocess_image(self, image_data: bytes | Image.Image) -> np.ndarray:
"""
Manually preprocess a single image from bytes or PIL.Image to (3, 512, 512).
"""
if isinstance(image_data, bytes):
image = Image.open(io.BytesIO(image_data))
else:
image = image_data
if image.mode != "RGB":
image = image.convert("RGB")
image = image.resize((512, 512), Image.Resampling.LANCZOS)
# Convert to numpy array, normalize to [0, 1], and transpose to (channels, height, width)
image_array = np.array(image, dtype=np.float32) / 255.0
image_array = np.transpose(image_array, (2, 0, 1)) # (H, W, C) -> (C, H, W)
return image_array
def _preprocess_inputs(self, raw_inputs):
"""
Preprocess inputs into a list of real input tensors (no dummies).
- For text: Returns list of input_ids.
- For vision: Returns list of pixel_values.
"""
if not isinstance(raw_inputs, list):
raw_inputs = [raw_inputs]
processed = []
if self.embedding_type == "text":
for text in raw_inputs:
input_ids = self.tokenizer([text], return_tensors="np")["input_ids"]
processed.append(input_ids)
elif self.embedding_type == "vision":
for img in raw_inputs:
pixel_values = self._preprocess_image(img)
processed.append(
pixel_values[np.newaxis, ...]
) # Add batch dim: (1, 3, 512, 512)
else:
raise ValueError(
f"Invalid embedding_type: {self.embedding_type}. Must be 'text' or 'vision'."
)
return processed
def _postprocess_outputs(self, outputs):
"""
Process ONNX model outputs, truncating each embedding in the array to truncate_dim.
- outputs: NumPy array of embeddings.
- Returns: List of truncated embeddings.
"""
# size of vector in database
truncate_dim = 768
# jina v2 defaults to 1024 and uses Matryoshka representation, so
# truncating only causes an extremely minor decrease in retrieval accuracy
if outputs.shape[-1] > truncate_dim:
outputs = outputs[..., :truncate_dim]
return outputs
def __call__(
self, inputs: list[str] | list[Image.Image] | list[str], embedding_type=None
) -> list[np.ndarray]:
self.embedding_type = embedding_type
if not self.embedding_type:
raise ValueError(
"embedding_type must be specified either in __init__ or __call__"
)
self._load_model_and_utils()
processed = self._preprocess_inputs(inputs)
batch_size = len(processed)
# Prepare ONNX inputs with matching batch sizes
onnx_inputs = {}
if self.embedding_type == "text":
onnx_inputs["input_ids"] = np.stack([x[0] for x in processed])
onnx_inputs["pixel_values"] = np.zeros(
(batch_size, 3, 512, 512), dtype=np.float32
)
elif self.embedding_type == "vision":
onnx_inputs["input_ids"] = np.zeros((batch_size, 16), dtype=np.int64)
onnx_inputs["pixel_values"] = np.stack([x[0] for x in processed])
else:
raise ValueError("Invalid embedding type")
# Run inference
outputs = self.runner.run(onnx_inputs)
if self.embedding_type == "text":
embeddings = outputs[2] # text embeddings
elif self.embedding_type == "vision":
embeddings = outputs[3] # image embeddings
else:
raise ValueError("Invalid embedding type")
embeddings = self._postprocess_outputs(embeddings)
return [embedding for embedding in embeddings]