blakeblackshear.frigate/frigate/object_processing.py
Martin Weinelt ab50d0b006
Add isort and ruff linter (#6575)
* Add isort and ruff linter

Both linters are pretty common among modern python code bases.

The isort tool provides stable sorting and grouping, as well as pruning
of unused imports.

Ruff is a modern linter, that is very fast due to being written in rust.
It can detect many common issues in a python codebase.

Removes the pylint dev requirement, since ruff replaces it.

* treewide: fix issues detected by ruff

* treewide: fix bare except clauses

* .devcontainer: Set up isort

* treewide: optimize imports

* treewide: apply black

* treewide: make regex patterns raw strings

This is necessary for escape sequences to be properly recognized.
2023-05-29 05:31:17 -05:00

1028 lines
38 KiB
Python

import base64
import datetime
import json
import logging
import os
import queue
import threading
from collections import Counter, defaultdict
from statistics import median
from typing import Callable
import cv2
import numpy as np
from frigate.comms.dispatcher import Dispatcher
from frigate.config import (
CameraConfig,
FrigateConfig,
MqttConfig,
RecordConfig,
SnapshotsConfig,
)
from frigate.const import CLIPS_DIR
from frigate.events.maintainer import EventTypeEnum
from frigate.util import (
SharedMemoryFrameManager,
calculate_region,
draw_box_with_label,
draw_timestamp,
)
logger = logging.getLogger(__name__)
def on_edge(box, frame_shape):
if (
box[0] == 0
or box[1] == 0
or box[2] == frame_shape[1] - 1
or box[3] == frame_shape[0] - 1
):
return True
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj["box"], frame_shape) and not on_edge(
current_thumb["box"], frame_shape
):
return False
# if the score is better by more than 5%
if new_obj["score"] > current_thumb["score"] + 0.05:
return True
# if the area is 10% larger
if new_obj["area"] > current_thumb["area"] * 1.1:
return True
return False
class TrackedObject:
def __init__(
self, camera, colormap, camera_config: CameraConfig, frame_cache, obj_data
):
self.obj_data = obj_data
self.camera = camera
self.colormap = colormap
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
self.entered_zones = []
self.false_positive = True
self.has_clip = False
self.has_snapshot = False
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.last_updated = 0
self.last_published = 0
self.frame = None
self.previous = self.to_dict()
# start the score history
self.score_history = [self.obj_data["score"]]
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data["label"]].threshold
return self.computed_score < threshold
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0] * (3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
thumb_update = False
significant_change = False
# if the object is not in the current frame, add a 0.0 to the score history
if obj_data["frame_time"] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(obj_data["score"])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
# calculate if this is a false positive
self.computed_score = self.compute_score()
if self.computed_score > self.top_score:
self.top_score = self.computed_score
self.false_positive = self._is_false_positive()
if not self.false_positive:
# determine if this frame is a better thumbnail
if self.thumbnail_data is None or is_better_thumbnail(
self.thumbnail_data, obj_data, self.camera_config.frame_shape
):
self.thumbnail_data = {
"frame_time": obj_data["frame_time"],
"box": obj_data["box"],
"area": obj_data["area"],
"region": obj_data["region"],
"score": obj_data["score"],
}
thumb_update = True
# check zones
current_zones = []
bottom_center = (obj_data["centroid"][0], obj_data["box"][3])
# check each zone
for name, zone in self.camera_config.zones.items():
# if the zone is not for this object type, skip
if len(zone.objects) > 0 and obj_data["label"] not in zone.objects:
continue
contour = zone.contour
# check if the object is in the zone
if cv2.pointPolygonTest(contour, bottom_center, False) >= 0:
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
if name not in self.entered_zones:
self.entered_zones.append(name)
if not self.false_positive:
# if the zones changed, signal an update
if set(self.current_zones) != set(current_zones):
significant_change = True
# if the position changed, signal an update
if self.obj_data["position_changes"] != obj_data["position_changes"]:
significant_change = True
# if the motionless_count reaches the stationary threshold
if (
self.obj_data["motionless_count"]
== self.camera_config.detect.stationary.threshold
):
significant_change = True
# update at least once per minute
if self.obj_data["frame_time"] - self.previous["frame_time"] > 60:
significant_change = True
self.obj_data.update(obj_data)
self.current_zones = current_zones
return (thumb_update, significant_change)
def to_dict(self, include_thumbnail: bool = False):
(self.thumbnail_data["frame_time"] if self.thumbnail_data is not None else 0.0)
event = {
"id": self.obj_data["id"],
"camera": self.camera,
"frame_time": self.obj_data["frame_time"],
"snapshot": self.thumbnail_data,
"label": self.obj_data["label"],
"sub_label": self.obj_data.get("sub_label"),
"top_score": self.top_score,
"false_positive": self.false_positive,
"start_time": self.obj_data["start_time"],
"end_time": self.obj_data.get("end_time", None),
"score": self.obj_data["score"],
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"ratio": self.obj_data["ratio"],
"region": self.obj_data["region"],
"stationary": self.obj_data["motionless_count"]
> self.camera_config.detect.stationary.threshold,
"motionless_count": self.obj_data["motionless_count"],
"position_changes": self.obj_data["position_changes"],
"current_zones": self.current_zones.copy(),
"entered_zones": self.entered_zones.copy(),
"has_clip": self.has_clip,
"has_snapshot": self.has_snapshot,
}
if include_thumbnail:
event["thumbnail"] = base64.b64encode(self.get_thumbnail()).decode("utf-8")
return event
def get_thumbnail(self):
if (
self.thumbnail_data is None
or self.thumbnail_data["frame_time"] not in self.frame_cache
):
ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8))
jpg_bytes = self.get_jpg_bytes(
timestamp=False, bounding_box=False, crop=True, height=175
)
if jpg_bytes:
return jpg_bytes
else:
ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8))
return jpg.tobytes()
def get_clean_png(self):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(
self.frame_cache[self.thumbnail_data["frame_time"]],
cv2.COLOR_YUV2BGR_I420,
)
except KeyError:
logger.warning(
f"Unable to create clean png because frame {self.thumbnail_data['frame_time']} is not in the cache"
)
return None
ret, png = cv2.imencode(".png", best_frame)
if ret:
return png.tobytes()
else:
return None
def get_jpg_bytes(
self, timestamp=False, bounding_box=False, crop=False, height=None, quality=70
):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(
self.frame_cache[self.thumbnail_data["frame_time"]],
cv2.COLOR_YUV2BGR_I420,
)
except KeyError:
logger.warning(
f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache"
)
return None
if bounding_box:
thickness = 2
color = self.colormap[self.obj_data["label"]]
# draw the bounding boxes on the frame
box = self.thumbnail_data["box"]
draw_box_with_label(
best_frame,
box[0],
box[1],
box[2],
box[3],
self.obj_data["label"],
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}",
thickness=thickness,
color=color,
)
if crop:
box = self.thumbnail_data["box"]
box_size = 300
region = calculate_region(
best_frame.shape,
box[0],
box[1],
box[2],
box[3],
box_size,
multiplier=1.1,
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
if height:
width = int(height * best_frame.shape[1] / best_frame.shape[0])
best_frame = cv2.resize(
best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA
)
if timestamp:
color = self.camera_config.timestamp_style.color
draw_timestamp(
best_frame,
self.thumbnail_data["frame_time"],
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.blue, color.green, color.red),
position=self.camera_config.timestamp_style.position,
)
ret, jpg = cv2.imencode(
".jpg", best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), quality]
)
if ret:
return jpg.tobytes()
else:
return None
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data["label"]
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj.obj_data["area"]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj.obj_data["area"]:
return True
# if the score is lower than the threshold, skip
if obj_settings.threshold > obj.computed_score:
return True
# if the object is not proportionally wide enough
if obj_settings.min_ratio > obj.obj_data["ratio"]:
return True
# if the object is proportionally too wide
if obj_settings.max_ratio < obj.obj_data["ratio"]:
return True
return False
# Maintains the state of a camera
class CameraState:
def __init__(
self, name, config: FrigateConfig, frame_manager: SharedMemoryFrameManager
):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects: dict[str, TrackedObject] = {}
self.object_counts = defaultdict(int)
self.tracked_objects: dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(list)
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.motion_boxes = []
self.regions = []
self.previous_frame_id = None
self.callbacks = defaultdict(list)
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = {k: v.to_dict() for k, v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get("bounding_boxes"):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = self.config.model.colormap[obj["label"]]
else:
thickness = 1
color = (255, 0, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
frame_copy,
box[0],
box[1],
box[2],
box[3],
obj["label"],
f"{obj['score']:.0%} {int(obj['area'])}",
thickness=thickness,
color=color,
)
if draw_options.get("regions"):
for region in regions:
cv2.rectangle(
frame_copy,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
if draw_options.get("zones"):
for name, zone in self.camera_config.zones.items():
thickness = (
8
if any(
name in obj["current_zones"] for obj in tracked_objects.values()
)
else 2
)
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get("mask"):
mask_overlay = np.where(self.camera_config.motion.mask == [0])
frame_copy[mask_overlay] = [0, 0, 0]
if draw_options.get("motion_boxes"):
for m_box in motion_boxes:
cv2.rectangle(
frame_copy,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
if draw_options.get("timestamp"):
color = self.camera_config.timestamp_style.color
draw_timestamp(
frame_copy,
frame_time,
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.blue, color.green, color.red),
position=self.camera_config.timestamp_style.position,
)
return frame_copy
def finished(self, obj_id):
del self.tracked_objects[obj_id]
def on(self, event_type: str, callback: Callable[[dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, current_detections, motion_boxes, regions):
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(
frame_id, self.camera_config.frame_shape_yuv
)
tracked_objects = self.tracked_objects.copy()
current_ids = set(current_detections.keys())
previous_ids = set(tracked_objects.keys())
removed_ids = previous_ids.difference(current_ids)
new_ids = current_ids.difference(previous_ids)
updated_ids = current_ids.intersection(previous_ids)
for id in new_ids:
new_obj = tracked_objects[id] = TrackedObject(
self.name,
self.config.model.colormap,
self.camera_config,
self.frame_cache,
current_detections[id],
)
# call event handlers
for c in self.callbacks["start"]:
c(self.name, new_obj, frame_time)
for id in updated_ids:
updated_obj = tracked_objects[id]
thumb_update, significant_update = updated_obj.update(
frame_time, current_detections[id]
)
if thumb_update:
# ensure this frame is stored in the cache
if (
updated_obj.thumbnail_data["frame_time"] == frame_time
and frame_time not in self.frame_cache
):
self.frame_cache[frame_time] = np.copy(current_frame)
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last thumb update
# and the last update is greater than the last publish or
# the object has changed significantly
if (
frame_time - updated_obj.last_published > 5
and updated_obj.last_updated > updated_obj.last_published
) or significant_update:
# call event handlers
for c in self.callbacks["update"]:
c(self.name, updated_obj, frame_time)
updated_obj.last_published = frame_time
for id in removed_ids:
# publish events to mqtt
removed_obj = tracked_objects[id]
if "end_time" not in removed_obj.obj_data:
removed_obj.obj_data["end_time"] = frame_time
for c in self.callbacks["end"]:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
for obj in tracked_objects.values():
object_type = obj.obj_data["label"]
# if the object's thumbnail is not from the current frame
if obj.false_positive or obj.thumbnail_data["frame_time"] != frame_time:
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if (
is_better_thumbnail(
current_best.thumbnail_data,
obj.thumbnail_data,
self.camera_config.frame_shape,
)
or (now - current_best.thumbnail_data["frame_time"])
> self.camera_config.best_image_timeout
):
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_time)
else:
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter(
obj.obj_data["label"]
for obj in tracked_objects.values()
if not obj.false_positive
)
# keep track of all labels detected for this camera
total_label_count = 0
# report on detected objects
for obj_name, count in obj_counter.items():
total_label_count += count
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks["object_status"]:
c(self.name, obj_name, count)
# publish for all labels detected for this camera
if total_label_count != self.object_counts.get("all"):
self.object_counts["all"] = total_label_count
for c in self.callbacks["object_status"]:
c(self.name, "all", total_label_count)
# expire any objects that are >0 and no longer detected
expired_objects = [
obj_name
for obj_name, count in self.object_counts.items()
if count > 0 and obj_name not in obj_counter
]
for obj_name in expired_objects:
# Ignore the artificial all label
if obj_name == "all":
continue
self.object_counts[obj_name] = 0
for c in self.callbacks["object_status"]:
c(self.name, obj_name, 0)
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = {
obj.thumbnail_data["frame_time"]
for obj in tracked_objects.values()
if not obj.false_positive
}
current_best_frames = {
obj.thumbnail_data["frame_time"] for obj in self.best_objects.values()
}
thumb_frames_to_delete = [
t
for t in self.frame_cache.keys()
if t not in current_thumb_frames and t not in current_best_frames
]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self.tracked_objects = tracked_objects
self.current_frame_time = frame_time
self.motion_boxes = motion_boxes
self.regions = regions
self._current_frame = current_frame
if self.previous_frame_id is not None:
self.frame_manager.close(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(
self,
config: FrigateConfig,
dispatcher: Dispatcher,
tracked_objects_queue,
event_queue,
event_processed_queue,
video_output_queue,
recordings_info_queue,
stop_event,
):
threading.Thread.__init__(self)
self.name = "detected_frames_processor"
self.config = config
self.dispatcher = dispatcher
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.video_output_queue = video_output_queue
self.recordings_info_queue = recordings_info_queue
self.stop_event = stop_event
self.camera_states: dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
self.last_motion_detected: dict[str, float] = {}
def start(camera, obj: TrackedObject, current_frame_time):
self.event_queue.put(
(EventTypeEnum.tracked_object, "start", camera, obj.to_dict())
)
def update(camera, obj: TrackedObject, current_frame_time):
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
after = obj.to_dict()
message = {
"before": obj.previous,
"after": after,
"type": "new" if obj.previous["false_positive"] else "update",
}
self.dispatcher.publish("events", json.dumps(message), retain=False)
obj.previous = after
self.event_queue.put(
(
EventTypeEnum.tracked_object,
"update",
camera,
obj.to_dict(include_thumbnail=True),
)
)
def end(camera, obj: TrackedObject, current_frame_time):
# populate has_snapshot
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
# write the snapshot to disk
if obj.has_snapshot:
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height,
quality=snapshot_config.quality,
)
if jpg_bytes is None:
logger.warning(f"Unable to save snapshot for {obj.obj_data['id']}.")
else:
with open(
os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"),
"wb",
) as j:
j.write(jpg_bytes)
# write clean snapshot if enabled
if snapshot_config.clean_copy:
png_bytes = obj.get_clean_png()
if png_bytes is None:
logger.warning(
f"Unable to save clean snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"{camera}-{obj.obj_data['id']}-clean.png",
),
"wb",
) as p:
p.write(png_bytes)
if not obj.false_positive:
message = {
"before": obj.previous,
"after": obj.to_dict(),
"type": "end",
}
self.dispatcher.publish("events", json.dumps(message), retain=False)
self.event_queue.put(
(
EventTypeEnum.tracked_object,
"end",
camera,
obj.to_dict(include_thumbnail=True),
)
)
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config: MqttConfig = self.config.cameras[camera].mqtt
if mqtt_config.enabled and self.should_mqtt_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
height=mqtt_config.height,
quality=mqtt_config.quality,
)
if jpg_bytes is None:
logger.warning(
f"Unable to send mqtt snapshot for {obj.obj_data['id']}."
)
else:
self.dispatcher.publish(
f"{camera}/{obj.obj_data['label']}/snapshot",
jpg_bytes,
retain=True,
)
def object_status(camera, object_name, status):
self.dispatcher.publish(f"{camera}/{object_name}", status, retain=False)
for camera in self.config.cameras.keys():
camera_state = CameraState(camera, self.config, self.frame_manager)
camera_state.on("start", start)
camera_state.on("update", update)
camera_state.on("end", end)
camera_state.on("snapshot", snapshot)
camera_state.on("object_status", object_status)
self.camera_states[camera] = camera_state
# {
# 'zone_name': {
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(dict))
def should_save_snapshot(self, camera, obj: TrackedObject):
if obj.false_positive:
return False
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
if not snapshot_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = snapshot_config.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
logger.debug(
f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
def should_retain_recording(self, camera, obj: TrackedObject):
if obj.false_positive:
return False
record_config: RecordConfig = self.config.cameras[camera].record
# Recording is disabled
if not record_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# If there are required zones and there is no overlap
required_zones = record_config.events.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not enter required zones"
)
return False
# If the required objects are not present
if (
record_config.events.objects is not None
and obj.obj_data["label"] not in record_config.events.objects
):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not contain required objects"
)
return False
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
logger.debug(
f"Not sending mqtt for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
def update_mqtt_motion(self, camera, frame_time, motion_boxes):
# publish if motion is currently being detected
if motion_boxes:
# only send ON if motion isn't already active
if self.last_motion_detected.get(camera, 0) == 0:
self.dispatcher.publish(
f"{camera}/motion",
"ON",
retain=False,
)
# always updated latest motion
self.last_motion_detected[camera] = frame_time
elif self.last_motion_detected.get(camera, 0) > 0:
mqtt_delay = self.config.cameras[camera].motion.mqtt_off_delay
# If no motion, make sure the off_delay has passed
if frame_time - self.last_motion_detected.get(camera, 0) >= mqtt_delay:
self.dispatcher.publish(
f"{camera}/motion",
"OFF",
retain=False,
)
# reset the last_motion so redundant `off` commands aren't sent
self.last_motion_detected[camera] = 0
def get_best(self, camera, label):
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best["frame"] = camera_state.frame_cache.get(
best_obj.thumbnail_data["frame_time"]
)
return best
else:
return {}
def get_current_frame(self, camera, draw_options={}):
if camera == "birdseye":
return self.frame_manager.get(
"birdseye",
(self.config.birdseye.height * 3 // 2, self.config.birdseye.width),
)
return self.camera_states[camera].get_current_frame(draw_options)
def get_current_frame_time(self, camera) -> int:
"""Returns the latest frame time for a given camera."""
return self.camera_states[camera].current_frame_time
def run(self):
while not self.stop_event.is_set():
try:
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.tracked_objects_queue.get(True, 1)
except queue.Empty:
continue
camera_state = self.camera_states[camera]
camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
self.update_mqtt_motion(camera, frame_time, motion_boxes)
tracked_objects = [
o.to_dict() for o in camera_state.tracked_objects.values()
]
self.video_output_queue.put(
(
camera,
frame_time,
tracked_objects,
motion_boxes,
regions,
)
)
# send info on this frame to the recordings maintainer
self.recordings_info_queue.put(
(
camera,
frame_time,
tracked_objects,
motion_boxes,
regions,
)
)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter(
obj.obj_data["label"]
for obj in camera_state.tracked_objects.values()
if zone in obj.current_zones and not obj.false_positive
)
total_label_count = 0
# update counts and publish status
for label in set(self.zone_data[zone].keys()) | set(obj_counter.keys()):
# Ignore the artificial all label
if label == "all":
continue
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = (
obj_counter[label] if label in obj_counter else 0
)
new_count = sum(zone_label.values())
if new_count != current_count:
self.dispatcher.publish(
f"{zone}/{label}",
new_count,
retain=False,
)
# Set the count for the /zone/all topic.
total_label_count += new_count
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
self.dispatcher.publish(
f"{zone}/{label}",
obj_counter[label],
retain=False,
)
# Set the count for the /zone/all topic.
total_label_count += obj_counter[label]
# if we have previously published a count for this zone all labels
zone_label = self.zone_data[zone]["all"]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = total_label_count
new_count = sum(zone_label.values())
if new_count != current_count:
self.dispatcher.publish(
f"{zone}/all",
new_count,
retain=False,
)
# if this is a new zone all label for this camera
else:
zone_label[camera] = total_label_count
self.dispatcher.publish(
f"{zone}/all",
total_label_count,
retain=False,
)
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)
logger.info("Exiting object processor...")