blakeblackshear.frigate/frigate/genai/__init__.py
Josh Hawkins 24ac9f3e5a
Use sqlite-vec extension instead of chromadb for embeddings (#14163)
* swap sqlite_vec for chroma in requirements

* load sqlite_vec in embeddings manager

* remove chroma and revamp Embeddings class for sqlite_vec

* manual minilm onnx inference

* remove chroma in clip model

* migrate api from chroma to sqlite_vec

* migrate event cleanup from chroma to sqlite_vec

* migrate embedding maintainer from chroma to sqlite_vec

* genai description for sqlite_vec

* load sqlite_vec in main thread db

* extend the SqliteQueueDatabase class and use peewee db.execute_sql

* search with Event type for similarity

* fix similarity search

* install and add comment about transformers

* fix normalization

* add id filter

* clean up

* clean up

* fully remove chroma and add transformers env var

* readd uvicorn for fastapi

* readd tokenizer parallelism env var

* remove chroma from docs

* remove chroma from UI

* try removing custom pysqlite3 build

* hard code limit

* optimize queries

* revert explore query

* fix query

* keep building pysqlite3

* single pass fetch and process

* remove unnecessary re-embed

* update deps

* move SqliteVecQueueDatabase to db directory

* make search thumbnail take up full size of results box

* improve typing

* improve model downloading and add status screen

* daemon downloading thread

* catch case when semantic search is disabled

* fix typing

* build sqlite_vec from source

* resolve conflict

* file permissions

* try build deps

* remove sources

* sources

* fix thread start

* include git in build

* reorder embeddings after detectors are started

* build with sqlite amalgamation

* non-platform specific

* use wget instead of curl

* remove unzip -d

* remove sqlite_vec from requirements and load the compiled version

* fix build

* avoid race in db connection

* add scale_factor and bias to description zscore normalization
2024-10-07 14:30:45 -06:00

67 lines
1.8 KiB
Python

"""Generative AI module for Frigate."""
import importlib
import os
from typing import Optional
from frigate.config import CameraConfig, GenAIConfig, GenAIProviderEnum
PROVIDERS = {}
def register_genai_provider(key: GenAIProviderEnum):
"""Register a GenAI provider."""
def decorator(cls):
PROVIDERS[key] = cls
return cls
return decorator
class GenAIClient:
"""Generative AI client for Frigate."""
def __init__(self, genai_config: GenAIConfig, timeout: int = 60) -> None:
self.genai_config: GenAIConfig = genai_config
self.timeout = timeout
self.provider = self._init_provider()
def generate_description(
self,
camera_config: CameraConfig,
thumbnails: list[bytes],
label: str,
) -> Optional[str]:
"""Generate a description for the frame."""
prompt = camera_config.genai.object_prompts.get(
label, camera_config.genai.prompt
)
return self._send(prompt, thumbnails)
def _init_provider(self):
"""Initialize the client."""
return None
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
"""Submit a request to the provider."""
return None
def get_genai_client(genai_config: GenAIConfig) -> Optional[GenAIClient]:
"""Get the GenAI client."""
if genai_config.enabled:
load_providers()
provider = PROVIDERS.get(genai_config.provider)
if provider:
return provider(genai_config)
return None
def load_providers():
package_dir = os.path.dirname(__file__)
for filename in os.listdir(package_dir):
if filename.endswith(".py") and filename != "__init__.py":
module_name = f"frigate.genai.{filename[:-3]}"
importlib.import_module(module_name)