blakeblackshear.frigate/frigate/video.py
2020-01-02 07:39:57 -06:00

360 lines
14 KiB
Python

import os
import time
import datetime
import cv2
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
from collections import defaultdict
from . util import tonumpyarray, draw_box_with_label
from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestFrames
from . mqtt import MqttObjectPublisher
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
def run(self):
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait for a frame
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# lock and make a copy of the frame
with self.frame_lock:
frame = self.shared_frame.copy()
frame_time = self.frame_time.value
# add the frame to recent frames
self.recent_frames[frame_time] = frame
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
for k in stored_frame_times:
if (now - k) > 2:
del self.recent_frames[k]
def get_frame_shape(source):
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
class CameraWatchdog(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
while True:
# wait a bit before checking
time.sleep(10)
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
print("last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
# Thread to read the stdout of the ffmpeg process and update the current frame
class CameraCapture(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
print("ffmpeg process is not running. exiting capture thread...")
break
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
if len(raw_image) == 0:
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
if (frame_num % self.camera.take_frame) != 0:
continue
with self.camera.frame_lock:
self.camera.frame_time.value = datetime.datetime.now().timestamp()
self.camera.current_frame[:] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
camera_objects_config = config.get('objects', {})
self.take_frame = self.config.get('take_frame', 1)
self.regions = self.config['regions']
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# create a numpy array for the current frame in initialize to zeros
self.current_frame = np.zeros(self.frame_shape, np.uint8)
# create shared value for storing the frame_time
self.frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
# initialize the frame cache
self.cached_frame_with_objects = {
'frame_bytes': [],
'frame_time': 0
}
self.ffmpeg_process = None
self.capture_thread = None
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for index, region in enumerate(self.config['regions']):
region_objects = region.get('objects', {})
# build objects config for region
objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
merged_objects_config = defaultdict(lambda: {})
for obj in objects_with_config:
merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
region['objects'] = merged_objects_config
self.detection_prep_threads.append(FramePrepper(
self.name,
self.current_frame,
self.frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'], index,
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
# start a thread to store the highest scoring recent frames for monitored object types
self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_frames.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
mqtt_publisher.start()
# create a watchdog thread for capture process
self.watchdog = CameraWatchdog(self)
# load in the mask for object detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
else:
self.mask = None
if self.mask is None:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start_or_restart_capture(self):
if not self.ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
self.ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.wait()
print("Waiting for the capture thread to exit...")
self.capture_thread.join()
self.ffmpeg_process = None
self.capture_thread = None
# create the process to capture frames from the input stream and store in a shared array
print("Creating a new ffmpeg process...")
self.start_ffmpeg()
print("Creating a new capture thread...")
self.capture_thread = CameraCapture(self)
print("Starting a new capture thread...")
self.capture_thread.start()
def start_ffmpeg(self):
ffmpeg_cmd = (['ffmpeg'] +
self.ffmpeg_global_args +
self.ffmpeg_hwaccel_args +
self.ffmpeg_input_args +
['-i', self.ffmpeg_input] +
self.ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
def start(self):
self.start_or_restart_capture()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
self.watchdog.start()
def join(self):
self.capture_thread.join()
def get_capture_pid(self):
return self.ffmpeg_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
for obj in objects:
# find the matching region
region = self.regions[obj['region_id']]
# Compute some extra properties
obj.update({
'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
})
# Compute the area
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
object_name = obj['name']
if object_name in region['objects']:
obj_settings = region['objects'][object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
continue
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', region['size']**2) < obj['area']:
continue
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
continue
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.mask[y_location][x_location] == [0]:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best(self, label):
return self.best_frames.best_frames.get(label)
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
frame_time = self.frame_time.value
if frame_time == self.cached_frame_with_objects['frame_time']:
return self.cached_frame_with_objects['frame_bytes']
# draw the bounding boxes on the screen
for obj in detected_objects:
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
frame_bytes = jpg.tobytes()
self.cached_frame_with_objects = {
'frame_bytes': frame_bytes,
'frame_time': frame_time
}
return frame_bytes