blakeblackshear.frigate/frigate/video.py
2022-02-18 21:18:26 -06:00

714 lines
23 KiB
Python
Executable File

import datetime
import itertools
import logging
import multiprocessing as mp
import queue
import random
import signal
import subprocess as sp
import threading
import time
from collections import defaultdict
from typing import Dict, List
import numpy as np
from cv2 import cv2, reduce
from setproctitle import setproctitle
from frigate.config import CameraConfig, DetectConfig
from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.objects import ObjectTracker
from frigate.util import (
EventsPerSecond,
FrameManager,
SharedMemoryFrameManager,
area,
calculate_region,
clipped,
intersection,
intersection_over_union,
listen,
yuv_region_2_rgb,
)
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
if not object_name in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > obj[1]:
return True
if not obj_settings.mask is None:
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(obj_settings.mask) - 1)
x_location = min(
int((obj[2][2] - obj[2][0]) / 2.0) + obj[2][0],
len(obj_settings.mask[0]) - 1,
)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
cropped_frame = cv2.resize(
cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR
)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def start_or_restart_ffmpeg(
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
):
if ffmpeg_process is not None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.DEVNULL,
stderr=logpipe,
stdin=sp.DEVNULL,
start_new_session=True,
)
else:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.PIPE,
stderr=logpipe,
stdin=sp.DEVNULL,
bufsize=frame_size * 10,
start_new_session=True,
)
return process
def capture_frames(
ffmpeg_process,
camera_name,
frame_shape,
frame_manager: FrameManager,
frame_queue,
fps: mp.Value,
skipped_fps: mp.Value,
current_frame: mp.Value,
):
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
skipped_eps.start()
while True:
fps.value = frame_rate.eps()
skipped_fps = skipped_eps.eps()
current_frame.value = datetime.datetime.now().timestamp()
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
logger.info(
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
)
frame_manager.delete(frame_name)
break
continue
frame_rate.update()
# if the queue is full, skip this frame
if frame_queue.full():
skipped_eps.update()
frame_manager.delete(frame_name)
continue
# close the frame
frame_manager.close(frame_name)
# add to the queue
frame_queue.put(current_frame.value)
class CameraWatchdog(threading.Thread):
def __init__(
self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event
):
threading.Thread.__init__(self)
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
self.config = config
self.capture_thread = None
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
self.ffmpeg_other_processes = []
self.camera_fps = camera_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.stop_event = stop_event
def run(self):
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if "detect" in c["roles"]:
continue
logpipe = LogPipe(
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}",
logging.ERROR,
)
self.ffmpeg_other_processes.append(
{
"cmd": c["cmd"],
"logpipe": logpipe,
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
}
)
time.sleep(10)
while not self.stop_event.wait(10):
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.logger.error(
f"FFMPEG process crashed unexpectedly for {self.camera_name}."
)
self.logger.error(
"The following ffmpeg logs include the last 100 lines prior to exit."
)
self.logger.error("You may have invalid args defined for this camera.")
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
)
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg didnt exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
for p in self.ffmpeg_other_processes:
poll = p["process"].poll()
if poll is None:
continue
p["logpipe"].dump()
p["process"] = start_or_restart_ffmpeg(
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
)
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p["process"], self.logger)
p["logpipe"].close()
self.logpipe.close()
def start_ffmpeg_detect(self):
ffmpeg_cmd = [
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(
self.camera_name,
self.ffmpeg_detect_process,
self.frame_shape,
self.frame_queue,
self.camera_fps,
)
self.capture_thread.start()
class CameraCapture(threading.Thread):
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
threading.Thread.__init__(self)
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_queue = frame_queue
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value("d", 0.0)
self.last_frame = 0
def run(self):
self.skipped_fps.start()
capture_frames(
self.ffmpeg_process,
self.camera_name,
self.frame_shape,
self.frame_manager,
self.frame_queue,
self.fps,
self.skipped_fps,
self.current_frame,
)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_queue = process_info["frame_queue"]
camera_watchdog = CameraWatchdog(
name,
config,
frame_queue,
process_info["camera_fps"],
process_info["ffmpeg_pid"],
stop_event,
)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(
name,
config: CameraConfig,
model_shape,
labelmap,
detection_queue,
result_connection,
detected_objects_queue,
process_info,
):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
setproctitle(f"frigate.process:{name}")
listen()
frame_queue = process_info["frame_queue"]
detection_enabled = process_info["detection_enabled"]
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
motion_detector = MotionDetector(frame_shape, config.motion)
object_detector = RemoteObjectDetector(
name, labelmap, detection_queue, result_connection, model_shape
)
object_tracker = ObjectTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(
name,
frame_queue,
frame_shape,
model_shape,
config.detect,
frame_manager,
motion_detector,
object_detector,
object_tracker,
detected_objects_queue,
process_info,
objects_to_track,
object_filters,
detection_enabled,
stop_event,
)
logger.info(f"{name}: exiting subprocess")
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def detect(
object_detector, frame, model_shape, region, objects_to_track, object_filters
):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2] - region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (
d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max - x_min) * (y_max - y_min),
region,
)
# apply object filters
if filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def process_frames(
camera_name: str,
frame_queue: mp.Queue,
frame_shape,
model_shape,
detect_config: DetectConfig,
frame_manager: FrameManager,
motion_detector: MotionDetector,
object_detector: RemoteObjectDetector,
object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue,
process_info: Dict,
objects_to_track: List[str],
object_filters,
detection_enabled: mp.Value,
stop_event,
exit_on_empty: bool = False,
):
fps = process_info["process_fps"]
detection_fps = process_info["detection_fps"]
current_frame_time = process_info["detection_frame"]
fps_tracker = EventsPerSecond()
fps_tracker.start()
startup_scan_counter = 0
while not stop_event.is_set():
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
except queue.Empty:
continue
current_frame_time.value = frame_time
frame = frame_manager.get(
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
)
if frame is None:
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put(
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
)
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
# look for motion
motion_boxes = motion_detector.detect(frame)
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and (
detect_config.stationary_interval == 0
or obj["motionless_count"] % detect_config.stationary_interval != 0
)
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if not obj["id"] in stationary_object_ids
]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
region_min_size = max(model_shape[0], model_shape[1])
# compute regions
regions = [
calculate_region(
frame_shape,
a[0],
a[1],
a[2],
a[3],
region_min_size,
multiplier=random.uniform(1.2, 1.5),
)
for a in combined_boxes
]
# consolidate regions with heavy overlap
regions = [
calculate_region(
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
)
for a in reduce_boxes(regions, 0.4)
]
# if starting up, get the next startup scan region
if startup_scan_counter < 9:
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
ymax = int(frame_shape[0] / 3 + ymin)
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
xmax = int(frame_shape[1] / 3 + xmin)
regions.append(
calculate_region(
frame_shape, xmin, ymin, xmax, ymax, region_min_size, multiplier=1.2
)
)
startup_scan_counter += 1
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape, box[0], box[1], box[2], box[3], region_min_size
)
regions.append(region)
selected_objects.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
## drop detections that overlap too much
consolidated_detections = []
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
# loop over detections grouped by label
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if 90% of smaller detection is inside of another detection, consolidate
if (
area(intersection(current_detection, to_check))
/ area(current_detection)
> 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, consolidated_detections)
# add to the queue if not full
if detected_objects_queue.full():
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put(
(
camera_name,
frame_time,
object_tracker.tracked_objects,
motion_boxes,
regions,
)
)
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")