blakeblackshear.frigate/frigate/api/review.py
Nicolas Mowen 4c24b70d47
Do not use a default value of datetime for params (#13957)
* Do not use a default value of datetime for params

* Formatting

* Remove unused

* Undo
2024-09-25 10:49:54 -05:00

604 lines
18 KiB
Python

"""Review apis."""
import datetime
import logging
from functools import reduce
from pathlib import Path
import pandas as pd
from fastapi import APIRouter
from fastapi.params import Depends
from fastapi.responses import JSONResponse
from peewee import Case, DoesNotExist, fn, operator
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.review_query_parameters import (
ReviewActivityMotionQueryParams,
ReviewQueryParams,
ReviewSummaryQueryParams,
)
from frigate.api.defs.tags import Tags
from frigate.models import Recordings, ReviewSegment
from frigate.util.builtin import get_tz_modifiers
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.review])
@router.get("/review")
def review(params: ReviewQueryParams = Depends()):
cameras = params.cameras
labels = params.labels
zones = params.zones
reviewed = params.reviewed
limit = params.limit
severity = params.severity
before = params.before or datetime.datetime.now().timestamp()
after = (
params.after
or (datetime.datetime.now() - datetime.timedelta(hours=24)).timestamp()
)
clauses = [
(
(ReviewSegment.start_time > after)
& (
(ReviewSegment.end_time.is_null(True))
| (ReviewSegment.end_time < before)
)
)
]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((ReviewSegment.camera << camera_list))
if labels != "all":
# use matching so segments with multiple labels
# still match on a search where any label matches
label_clauses = []
filtered_labels = labels.split(",")
for label in filtered_labels:
label_clauses.append(
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
| (ReviewSegment.data["audio"].cast("text") % f'*"{label}"*')
)
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
if zones != "all":
# use matching so segments with multiple zones
# still match on a search where any zone matches
zone_clauses = []
filtered_zones = zones.split(",")
for zone in filtered_zones:
zone_clauses.append(
(ReviewSegment.data["zones"].cast("text") % f'*"{zone}"*')
)
zone_clause = reduce(operator.or_, zone_clauses)
clauses.append((zone_clause))
if reviewed == 0:
clauses.append((ReviewSegment.has_been_reviewed == False))
if severity:
clauses.append((ReviewSegment.severity == severity))
review = (
ReviewSegment.select()
.where(reduce(operator.and_, clauses))
.order_by(ReviewSegment.severity.asc())
.order_by(ReviewSegment.start_time.desc())
.limit(limit)
.dicts()
.iterator()
)
return JSONResponse(content=[r for r in review])
@router.get("/review/summary")
def review_summary(params: ReviewSummaryQueryParams = Depends()):
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(params.timezone)
day_ago = (datetime.datetime.now() - datetime.timedelta(hours=24)).timestamp()
month_ago = (datetime.datetime.now() - datetime.timedelta(days=30)).timestamp()
cameras = params.cameras
labels = params.labels
zones = params.zones
clauses = [(ReviewSegment.start_time > day_ago)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((ReviewSegment.camera << camera_list))
if labels != "all":
# use matching so segments with multiple labels
# still match on a search where any label matches
label_clauses = []
filtered_labels = labels.split(",")
for label in filtered_labels:
label_clauses.append(
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
| (ReviewSegment.data["audio"].cast("text") % f'*"{label}"*')
)
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
if zones != "all":
# use matching so segments with multiple zones
# still match on a search where any zone matches
zone_clauses = []
filtered_zones = zones.split(",")
for zone in filtered_zones:
zone_clauses.append(
(ReviewSegment.data["zones"].cast("text") % f'*"{zone}"*')
)
zone_clause = reduce(operator.or_, zone_clauses)
clauses.append((zone_clause))
last_24 = (
ReviewSegment.select(
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_motion"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
1,
)
],
0,
)
).alias("total_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
1,
)
],
0,
)
).alias("total_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
1,
)
],
0,
)
).alias("total_motion"),
)
.where(reduce(operator.and_, clauses))
.dicts()
.get()
)
clauses = [(ReviewSegment.start_time > month_ago)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((ReviewSegment.camera << camera_list))
if labels != "all":
# use matching so segments with multiple labels
# still match on a search where any label matches
label_clauses = []
filtered_labels = labels.split(",")
for label in filtered_labels:
label_clauses.append(
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
)
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
last_month = (
ReviewSegment.select(
fn.strftime(
"%Y-%m-%d",
fn.datetime(
ReviewSegment.start_time,
"unixepoch",
hour_modifier,
minute_modifier,
),
).alias("day"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_motion"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
1,
)
],
0,
)
).alias("total_alert"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "detection"),
1,
)
],
0,
)
).alias("total_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
1,
)
],
0,
)
).alias("total_motion"),
)
.where(reduce(operator.and_, clauses))
.group_by(
(ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
)
.order_by(ReviewSegment.start_time.desc())
)
data = {
"last24Hours": last_24,
}
for e in last_month.dicts().iterator():
data[e["day"]] = e
return JSONResponse(content=data)
@router.post("/reviews/viewed")
def set_multiple_reviewed(body: dict = None):
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
context=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
ReviewSegment.update(has_been_reviewed=True).where(
ReviewSegment.id << list_of_ids
).execute()
return JSONResponse(
content=({"success": True, "message": "Reviewed multiple items"}),
status_code=200,
)
@router.post("/reviews/delete")
def delete_reviews(body: dict = None):
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
content=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
reviews = (
ReviewSegment.select(
ReviewSegment.camera,
ReviewSegment.start_time,
ReviewSegment.end_time,
)
.where(ReviewSegment.id << list_of_ids)
.dicts()
.iterator()
)
recording_ids = []
for review in reviews:
start_time = review["start_time"]
end_time = review["end_time"]
camera_name = review["camera"]
recordings = (
Recordings.select(Recordings.id, Recordings.path)
.where(
Recordings.start_time.between(start_time, end_time)
| Recordings.end_time.between(start_time, end_time)
| (
(start_time > Recordings.start_time)
& (end_time < Recordings.end_time)
)
)
.where(Recordings.camera == camera_name)
.dicts()
.iterator()
)
for recording in recordings:
Path(recording["path"]).unlink(missing_ok=True)
recording_ids.append(recording["id"])
# delete recordings and review segments
Recordings.delete().where(Recordings.id << recording_ids).execute()
ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
return JSONResponse(
content=({"success": True, "message": "Delete reviews"}), status_code=200
)
@router.get("/review/activity/motion")
def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
"""Get motion and audio activity."""
cameras = params.cameras
before = params.before or datetime.datetime.now().timestamp()
after = (
params.after
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
)
# get scale in seconds
scale = params.scale
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
clauses.append((Recordings.motion > 0))
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
data: list[Recordings] = (
Recordings.select(
Recordings.camera,
Recordings.start_time,
Recordings.motion,
)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.dicts()
.iterator()
)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "motion", "camera"])
if df.empty:
logger.warning("No motion data found for the requested time range")
return JSONResponse(content=[])
df = df.astype(dtype={"motion": "float32"})
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
df.set_index(["start_time"], inplace=True)
# normalize data
motion = (
df["motion"]
.resample(f"{scale}s")
.apply(lambda x: max(x, key=abs, default=0.0))
.fillna(0.0)
.to_frame()
)
cameras = df["camera"].resample(f"{scale}s").agg(lambda x: ",".join(set(x)))
df = motion.join(cameras)
length = df.shape[0]
chunk = int(60 * (60 / scale))
for i in range(0, length, chunk):
part = df.iloc[i : i + chunk]
min_val, max_val = part["motion"].min(), part["motion"].max()
if min_val != max_val:
df.iloc[i : i + chunk, 0] = (
part["motion"].sub(min_val).div(max_val - min_val).mul(100).fillna(0)
)
else:
df.iloc[i : i + chunk, 0] = 0.0
# change types for output
df.index = df.index.astype(int) // (10**9)
normalized = df.reset_index().to_dict("records")
return JSONResponse(content=normalized)
@router.get("/review/activity/audio")
def audio_activity(params: ReviewActivityMotionQueryParams = Depends()):
"""Get motion and audio activity."""
cameras = params.cameras
before = params.before or datetime.datetime.now().timestamp()
after = (
params.after
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
)
# get scale in seconds
scale = params.scale
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
all_recordings: list[Recordings] = (
Recordings.select(
Recordings.start_time,
Recordings.duration,
Recordings.objects,
Recordings.dBFS,
)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.iterator()
)
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
# periods where active objects / audio was detected will cause audio to be scaled down
data: list[dict[str, float]] = []
for rec in all_recordings:
data.append(
{
"start_time": rec.start_time,
"audio": rec.dBFS if rec.objects == 0 else 0,
}
)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "audio"])
df = df.astype(dtype={"audio": "float16"})
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
df.set_index(["start_time"], inplace=True)
# normalize data
df = df.resample(f"{scale}S").mean().fillna(0.0)
df["audio"] = (
(df["audio"] - df["audio"].max())
/ (df["audio"].min() - df["audio"].max())
* -100
)
# change types for output
df.index = df.index.astype(int) // (10**9)
normalized = df.reset_index().to_dict("records")
return JSONResponse(content=normalized)
@router.get("/review/event/{event_id}")
def get_review_from_event(event_id: str):
try:
return model_to_dict(
ReviewSegment.get(
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
)
)
except DoesNotExist:
return "Review item not found", 404
@router.get("/review/{event_id}")
def get_review(event_id: str):
try:
return model_to_dict(ReviewSegment.get(ReviewSegment.id == event_id))
except DoesNotExist:
return "Review item not found", 404
@router.delete("/review/{event_id}/viewed")
def set_not_reviewed(event_id: str):
try:
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == event_id)
except DoesNotExist:
return JSONResponse(
content=(
{"success": False, "message": "Review " + event_id + " not found"}
),
status_code=404,
)
review.has_been_reviewed = False
review.save()
return JSONResponse(
content=({"success": True, "message": "Reviewed " + event_id + " not viewed"}),
status_code=200,
)