blakeblackshear.frigate/frigate/data_processing/real_time/face.py
leccelecce dda7be99eb
Face rec: only consider webp files in /faces and handle_request (#17244)
* Face rec: only consider webp files

* Allow png/jpg/jpeg as well as webp
2025-03-19 06:44:07 -06:00

499 lines
18 KiB
Python

"""Handle processing images for face detection and recognition."""
import base64
import datetime
import logging
import os
import random
import shutil
import string
from typing import Optional
import cv2
import numpy as np
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum
from frigate.comms.event_metadata_updater import (
EventMetadataPublisher,
EventMetadataTypeEnum,
)
from frigate.config import FrigateConfig
from frigate.const import FACE_DIR, MODEL_CACHE_DIR
from frigate.util.image import area
from ..types import DataProcessorMetrics
from .api import RealTimeProcessorApi
logger = logging.getLogger(__name__)
MAX_DETECTION_HEIGHT = 1080
MAX_FACE_ATTEMPTS = 100
MIN_MATCHING_FACES = 2
class FaceRealTimeProcessor(RealTimeProcessorApi):
def __init__(
self,
config: FrigateConfig,
sub_label_publisher: EventMetadataPublisher,
metrics: DataProcessorMetrics,
):
super().__init__(config, metrics)
self.face_config = config.face_recognition
self.sub_label_publisher = sub_label_publisher
self.face_detector: cv2.FaceDetectorYN = None
self.landmark_detector: cv2.face.FacemarkLBF = None
self.recognizer: cv2.face.LBPHFaceRecognizer = None
self.requires_face_detection = "face" not in self.config.objects.all_objects
self.detected_faces: dict[str, float] = {}
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
self.model_files = {
"facedet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
"landmarkdet.yaml": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
}
if not all(
os.path.exists(os.path.join(download_path, n))
for n in self.model_files.keys()
):
# conditionally import ModelDownloader
from frigate.util.downloader import ModelDownloader
self.downloader = ModelDownloader(
model_name="facedet",
download_path=download_path,
file_names=self.model_files.keys(),
download_func=self.__download_models,
complete_func=self.__build_detector,
)
self.downloader.ensure_model_files()
else:
self.__build_detector()
self.label_map: dict[int, str] = {}
self.__build_classifier()
def __download_models(self, path: str) -> None:
try:
file_name = os.path.basename(path)
# conditionally import ModelDownloader
from frigate.util.downloader import ModelDownloader
ModelDownloader.download_from_url(self.model_files[file_name], path)
except Exception as e:
logger.error(f"Failed to download {path}: {e}")
def __build_detector(self) -> None:
self.face_detector = cv2.FaceDetectorYN.create(
os.path.join(MODEL_CACHE_DIR, "facedet/facedet.onnx"),
config="",
input_size=(320, 320),
score_threshold=0.5,
nms_threshold=0.3,
)
self.landmark_detector = cv2.face.createFacemarkLBF()
self.landmark_detector.loadModel(
os.path.join(MODEL_CACHE_DIR, "facedet/landmarkdet.yaml")
)
def __build_classifier(self) -> None:
if not self.landmark_detector:
return None
labels = []
faces = []
dir = "/media/frigate/clips/faces"
for idx, name in enumerate(os.listdir(dir)):
if name == "train":
continue
face_folder = os.path.join(dir, name)
if not os.path.isdir(face_folder):
continue
self.label_map[idx] = name
for image in os.listdir(face_folder):
img = cv2.imread(os.path.join(face_folder, image))
if img is None:
continue
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
faces.append(img)
labels.append(idx)
if not faces:
return
self.recognizer: cv2.face.LBPHFaceRecognizer = (
cv2.face.LBPHFaceRecognizer_create(
radius=2, threshold=(1 - self.face_config.min_score) * 1000
)
)
self.recognizer.train(faces, np.array(labels))
def __align_face(
self,
image: np.ndarray,
output_width: int,
output_height: int,
) -> np.ndarray:
_, lands = self.landmark_detector.fit(
image, np.array([(0, 0, image.shape[1], image.shape[0])])
)
landmarks: np.ndarray = lands[0][0]
# get landmarks for eyes
leftEyePts = landmarks[42:48]
rightEyePts = landmarks[36:42]
# compute the center of mass for each eye
leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
rightEyeCenter = rightEyePts.mean(axis=0).astype("int")
# compute the angle between the eye centroids
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
angle = np.degrees(np.arctan2(dY, dX)) - 180
# compute the desired right eye x-coordinate based on the
# desired x-coordinate of the left eye
desiredRightEyeX = 1.0 - 0.35
# determine the scale of the new resulting image by taking
# the ratio of the distance between eyes in the *current*
# image to the ratio of distance between eyes in the
# *desired* image
dist = np.sqrt((dX**2) + (dY**2))
desiredDist = desiredRightEyeX - 0.35
desiredDist *= output_width
scale = desiredDist / dist
# compute center (x, y)-coordinates (i.e., the median point)
# between the two eyes in the input image
# grab the rotation matrix for rotating and scaling the face
eyesCenter = (
int((leftEyeCenter[0] + rightEyeCenter[0]) // 2),
int((leftEyeCenter[1] + rightEyeCenter[1]) // 2),
)
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
# update the translation component of the matrix
tX = output_width * 0.5
tY = output_height * 0.35
M[0, 2] += tX - eyesCenter[0]
M[1, 2] += tY - eyesCenter[1]
# apply the affine transformation
return cv2.warpAffine(
image, M, (output_width, output_height), flags=cv2.INTER_CUBIC
)
def __get_blur_factor(self, input: np.ndarray) -> float:
"""Calculates the factor for the confidence based on the blur of the image."""
if not self.face_config.blur_confidence_filter:
return 1.0
variance = cv2.Laplacian(input, cv2.CV_64F).var()
if variance < 60: # image is very blurry
return 0.96
elif variance < 70: # image moderately blurry
return 0.98
elif variance < 80: # image is slightly blurry
return 0.99
else:
return 1.0
def __clear_classifier(self) -> None:
self.face_recognizer = None
self.label_map = {}
def __detect_face(
self, input: np.ndarray, threshold: float
) -> tuple[int, int, int, int]:
"""Detect faces in input image."""
if not self.face_detector:
return None
# YN face detector fails at extreme definitions
# this rescales to a size that can properly detect faces
# still retaining plenty of detail
if input.shape[0] > MAX_DETECTION_HEIGHT:
scale_factor = MAX_DETECTION_HEIGHT / input.shape[0]
new_width = int(scale_factor * input.shape[1])
input = cv2.resize(input, (new_width, MAX_DETECTION_HEIGHT))
else:
scale_factor = 1
self.face_detector.setInputSize((input.shape[1], input.shape[0]))
faces = self.face_detector.detect(input)
if faces is None or faces[1] is None:
return None
face = None
for _, potential_face in enumerate(faces[1]):
if potential_face[-1] < threshold:
continue
raw_bbox = potential_face[0:4].astype(np.uint16)
x: int = int(max(raw_bbox[0], 0) / scale_factor)
y: int = int(max(raw_bbox[1], 0) / scale_factor)
w: int = int(raw_bbox[2] / scale_factor)
h: int = int(raw_bbox[3] / scale_factor)
bbox = (x, y, x + w, y + h)
if face is None or area(bbox) > area(face):
face = bbox
return face
def __classify_face(self, face_image: np.ndarray) -> tuple[str, float] | None:
if not self.landmark_detector:
return None
if not self.label_map or not self.recognizer:
self.__build_classifier()
if not self.recognizer:
return None
# face recognition is best run on grayscale images
img = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)
# get blur factor before aligning face
blur_factor = self.__get_blur_factor(img)
logger.debug(f"face detected with bluriness {blur_factor}")
# align face and run recognition
img = self.__align_face(img, img.shape[1], img.shape[0])
index, distance = self.recognizer.predict(img)
if index == -1:
return None
score = (1.0 - (distance / 1000)) * blur_factor
return self.label_map[index], round(score, 2)
def __update_metrics(self, duration: float) -> None:
self.metrics.face_rec_fps.value = (
self.metrics.face_rec_fps.value * 9 + duration
) / 10
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray):
"""Look for faces in image."""
start = datetime.datetime.now().timestamp()
id = obj_data["id"]
# don't run for non person objects
if obj_data.get("label") != "person":
logger.debug("Not a processing face for non person object.")
return
# don't overwrite sub label for objects that have a sub label
# that is not a face
if obj_data.get("sub_label") and id not in self.detected_faces:
logger.debug(
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
)
return
face: Optional[dict[str, any]] = None
if self.requires_face_detection:
logger.debug("Running manual face detection.")
person_box = obj_data.get("box")
if not person_box:
return
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
left, top, right, bottom = person_box
person = rgb[top:bottom, left:right]
face_box = self.__detect_face(person, self.face_config.detection_threshold)
if not face_box:
logger.debug("Detected no faces for person object.")
return
face_frame = person[
max(0, face_box[1]) : min(frame.shape[0], face_box[3]),
max(0, face_box[0]) : min(frame.shape[1], face_box[2]),
]
face_frame = cv2.cvtColor(face_frame, cv2.COLOR_RGB2BGR)
else:
# don't run for object without attributes
if not obj_data.get("current_attributes"):
logger.debug("No attributes to parse.")
return
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
for attr in attributes:
if attr.get("label") != "face":
continue
if face is None or attr.get("score", 0.0) > face.get("score", 0.0):
face = attr
# no faces detected in this frame
if not face:
return
face_box = face.get("box")
# check that face is valid
if not face_box or area(face_box) < self.config.face_recognition.min_area:
logger.debug(f"Invalid face box {face}")
return
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
face_frame = face_frame[
max(0, face_box[1]) : min(frame.shape[0], face_box[3]),
max(0, face_box[0]) : min(frame.shape[1], face_box[2]),
]
res = self.__classify_face(face_frame)
if not res:
return
sub_label, score = res
# calculate the overall face score as the probability * area of face
# this will help to reduce false positives from small side-angle faces
# if a large front-on face image may have scored slightly lower but
# is more likely to be accurate due to the larger face area
face_score = round(score * face_frame.shape[0] * face_frame.shape[1], 2)
logger.debug(
f"Detected best face for person as: {sub_label} with probability {score} and overall face score {face_score}"
)
if self.config.face_recognition.save_attempts:
# write face to library
folder = os.path.join(FACE_DIR, "train")
file = os.path.join(folder, f"{id}-{sub_label}-{score}-{face_score}.webp")
os.makedirs(folder, exist_ok=True)
cv2.imwrite(file, face_frame)
if score < self.config.face_recognition.recognition_threshold:
logger.debug(
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.recognition_threshold}"
)
self.__update_metrics(datetime.datetime.now().timestamp() - start)
return
if id in self.detected_faces and face_score <= self.detected_faces[id]:
logger.debug(
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
)
self.__update_metrics(datetime.datetime.now().timestamp() - start)
return
self.sub_label_publisher.publish(
EventMetadataTypeEnum.sub_label, (id, sub_label, score)
)
self.detected_faces[id] = face_score
self.__update_metrics(datetime.datetime.now().timestamp() - start)
def handle_request(self, topic, request_data) -> dict[str, any] | None:
if topic == EmbeddingsRequestEnum.clear_face_classifier.value:
self.__clear_classifier()
elif topic == EmbeddingsRequestEnum.register_face.value:
rand_id = "".join(
random.choices(string.ascii_lowercase + string.digits, k=6)
)
label = request_data["face_name"]
id = f"{label}-{rand_id}"
if request_data.get("cropped"):
thumbnail = request_data["image"]
else:
img = cv2.imdecode(
np.frombuffer(
base64.b64decode(request_data["image"]), dtype=np.uint8
),
cv2.IMREAD_COLOR,
)
# detect faces with lower confidence since we expect the face
# to be visible in uploaded images
face_box = self.__detect_face(img, 0.5)
if not face_box:
return {
"message": "No face was detected.",
"success": False,
}
face = img[face_box[1] : face_box[3], face_box[0] : face_box[2]]
_, thumbnail = cv2.imencode(
".webp", face, [int(cv2.IMWRITE_WEBP_QUALITY), 100]
)
# write face to library
folder = os.path.join(FACE_DIR, label)
file = os.path.join(folder, f"{id}.webp")
os.makedirs(folder, exist_ok=True)
# save face image
with open(file, "wb") as output:
output.write(thumbnail.tobytes())
self.__clear_classifier()
return {
"message": "Successfully registered face.",
"success": True,
}
elif topic == EmbeddingsRequestEnum.reprocess_face.value:
current_file: str = request_data["image_file"]
id = current_file[0 : current_file.index("-", current_file.index("-") + 1)]
face_score = current_file[current_file.rfind("-") : current_file.rfind(".")]
img = None
if current_file:
img = cv2.imread(current_file)
if img is None:
return {
"message": "Invalid image file.",
"success": False,
}
res = self.__classify_face(img)
if not res:
return
sub_label, score = res
if self.config.face_recognition.save_attempts:
# write face to library
folder = os.path.join(FACE_DIR, "train")
new_file = os.path.join(
folder, f"{id}-{sub_label}-{score}-{face_score}.webp"
)
shutil.move(current_file, new_file)
files = sorted(
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
key=lambda f: os.path.getctime(os.path.join(folder, f)),
reverse=True,
)
# delete oldest face image if maximum is reached
if len(files) > MAX_FACE_ATTEMPTS:
os.unlink(os.path.join(folder, files[-1]))
def expire_object(self, object_id: str):
if object_id in self.detected_faces:
self.detected_faces.pop(object_id)