mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
107 lines
3.6 KiB
Python
107 lines
3.6 KiB
Python
"""CLIP Embeddings for Frigate."""
|
|
|
|
import errno
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Tuple, Union
|
|
|
|
import onnxruntime as ort
|
|
import requests
|
|
from chromadb import EmbeddingFunction, Embeddings
|
|
from chromadb.api.types import (
|
|
Documents,
|
|
Images,
|
|
is_document,
|
|
is_image,
|
|
)
|
|
from onnx_clip import OnnxClip
|
|
|
|
from frigate.const import MODEL_CACHE_DIR
|
|
|
|
|
|
class Clip(OnnxClip):
|
|
"""Override load models to download to cache directory."""
|
|
|
|
@staticmethod
|
|
def _load_models(
|
|
model: str,
|
|
silent: bool,
|
|
) -> Tuple[ort.InferenceSession, ort.InferenceSession]:
|
|
"""
|
|
These models are a part of the container. Treat as as such.
|
|
"""
|
|
if model == "ViT-B/32":
|
|
IMAGE_MODEL_FILE = "clip_image_model_vitb32.onnx"
|
|
TEXT_MODEL_FILE = "clip_text_model_vitb32.onnx"
|
|
elif model == "RN50":
|
|
IMAGE_MODEL_FILE = "clip_image_model_rn50.onnx"
|
|
TEXT_MODEL_FILE = "clip_text_model_rn50.onnx"
|
|
else:
|
|
raise ValueError(f"Unexpected model {model}. No `.onnx` file found.")
|
|
|
|
models = []
|
|
for model_file in [IMAGE_MODEL_FILE, TEXT_MODEL_FILE]:
|
|
path = os.path.join(MODEL_CACHE_DIR, "clip", model_file)
|
|
models.append(Clip._load_model(path, silent))
|
|
|
|
return models[0], models[1]
|
|
|
|
@staticmethod
|
|
def _load_model(path: str, silent: bool):
|
|
providers = ["CPUExecutionProvider"]
|
|
|
|
try:
|
|
if os.path.exists(path):
|
|
return ort.InferenceSession(path, providers=providers)
|
|
else:
|
|
raise FileNotFoundError(
|
|
errno.ENOENT,
|
|
os.strerror(errno.ENOENT),
|
|
path,
|
|
)
|
|
except Exception:
|
|
s3_url = f"https://lakera-clip.s3.eu-west-1.amazonaws.com/{os.path.basename(path)}"
|
|
if not silent:
|
|
logging.info(
|
|
f"The model file ({path}) doesn't exist "
|
|
f"or it is invalid. Downloading it from the public S3 "
|
|
f"bucket: {s3_url}." # noqa: E501
|
|
)
|
|
|
|
# Download from S3
|
|
# Saving to a temporary file first to avoid corrupting the file
|
|
temporary_filename = Path(path).with_name(os.path.basename(path) + ".part")
|
|
|
|
# Create any missing directories in the path
|
|
temporary_filename.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
with requests.get(s3_url, stream=True) as r:
|
|
r.raise_for_status()
|
|
with open(temporary_filename, "wb") as f:
|
|
for chunk in r.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
f.flush()
|
|
# Finally move the temporary file to the correct location
|
|
temporary_filename.rename(path)
|
|
return ort.InferenceSession(path, providers=providers)
|
|
|
|
|
|
class ClipEmbedding(EmbeddingFunction):
|
|
"""Embedding function for CLIP model used in Chroma."""
|
|
|
|
def __init__(self, model: str = "ViT-B/32"):
|
|
"""Initialize CLIP Embedding function."""
|
|
self.model = Clip(model)
|
|
|
|
def __call__(self, input: Union[Documents, Images]) -> Embeddings:
|
|
embeddings: Embeddings = []
|
|
for item in input:
|
|
if is_image(item):
|
|
result = self.model.get_image_embeddings([item])
|
|
embeddings.append(result[0, :].tolist())
|
|
elif is_document(item):
|
|
result = self.model.get_text_embeddings([item])
|
|
embeddings.append(result[0, :].tolist())
|
|
return embeddings
|