mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			159 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import os.path
 | 
						|
import re
 | 
						|
import urllib.request
 | 
						|
from typing import Literal
 | 
						|
 | 
						|
from pydantic import Field
 | 
						|
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "rknn"
 | 
						|
 | 
						|
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
 | 
						|
 | 
						|
supported_models = {ModelTypeEnum.yolonas: "^deci-fp16-yolonas_[sml]$"}
 | 
						|
 | 
						|
model_chache_dir = "/config/model_cache/rknn_cache/"
 | 
						|
 | 
						|
 | 
						|
class RknnDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
    num_cores: int = Field(default=0, ge=0, le=3, title="Number of NPU cores to use.")
 | 
						|
 | 
						|
 | 
						|
class Rknn(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
 | 
						|
    def __init__(self, config: RknnDetectorConfig):
 | 
						|
        super().__init__(config)
 | 
						|
        self.height = config.model.height
 | 
						|
        self.width = config.model.width
 | 
						|
        core_mask = 2**config.num_cores - 1
 | 
						|
        soc = self.get_soc()
 | 
						|
 | 
						|
        model_path = config.model.path or "deci-fp16-yolonas_s"
 | 
						|
 | 
						|
        model_props = self.parse_model_input(model_path, soc)
 | 
						|
 | 
						|
        if model_props["preset"]:
 | 
						|
            config.model.model_type = model_props["model_type"]
 | 
						|
 | 
						|
            if model_props["model_type"] == ModelTypeEnum.yolonas:
 | 
						|
                logger.info(
 | 
						|
                    "You are using yolo-nas with weights from DeciAI. "
 | 
						|
                    "These weights are subject to their license and can't be used commercially. "
 | 
						|
                    "For more information, see: https://docs.deci.ai/super-gradients/latest/LICENSE.YOLONAS.html"
 | 
						|
                )
 | 
						|
 | 
						|
        from rknnlite.api import RKNNLite
 | 
						|
 | 
						|
        self.rknn = RKNNLite(verbose=False)
 | 
						|
        if self.rknn.load_rknn(model_props["path"]) != 0:
 | 
						|
            logger.error("Error initializing rknn model.")
 | 
						|
        if self.rknn.init_runtime(core_mask=core_mask) != 0:
 | 
						|
            logger.error(
 | 
						|
                "Error initializing rknn runtime. Do you run docker in privileged mode?"
 | 
						|
            )
 | 
						|
 | 
						|
    def __del__(self):
 | 
						|
        self.rknn.release()
 | 
						|
 | 
						|
    def get_soc(self):
 | 
						|
        try:
 | 
						|
            with open("/proc/device-tree/compatible") as file:
 | 
						|
                soc = file.read().split(",")[-1].strip("\x00")
 | 
						|
        except FileNotFoundError:
 | 
						|
            raise Exception("Make sure to run docker in privileged mode.")
 | 
						|
 | 
						|
        if soc not in supported_socs:
 | 
						|
            raise Exception(
 | 
						|
                f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {supported_socs}."
 | 
						|
            )
 | 
						|
 | 
						|
        return soc
 | 
						|
 | 
						|
    def parse_model_input(self, model_path, soc):
 | 
						|
        model_props = {}
 | 
						|
 | 
						|
        # find out if user provides his own model
 | 
						|
        # user provided models should be a path and contain a "/"
 | 
						|
        if "/" in model_path:
 | 
						|
            model_props["preset"] = False
 | 
						|
            model_props["path"] = model_path
 | 
						|
        else:
 | 
						|
            model_props["preset"] = True
 | 
						|
 | 
						|
            """
 | 
						|
            Filenames follow this pattern:
 | 
						|
            origin-quant-basename-soc-tk_version-rev.rknn
 | 
						|
            origin: From where comes the model? default: upstream repo; rknn: modifications from airockchip
 | 
						|
            quant: i8 or fp16
 | 
						|
            basename: e.g. yolonas_s
 | 
						|
            soc: e.g. rk3588
 | 
						|
            tk_version: e.g. v2.0.0
 | 
						|
            rev: e.g. 1
 | 
						|
 | 
						|
            Full name could be: default-fp16-yolonas_s-rk3588-v2.0.0-1.rknn
 | 
						|
            """
 | 
						|
 | 
						|
            model_matched = False
 | 
						|
 | 
						|
            for model_type, pattern in supported_models.items():
 | 
						|
                if re.match(pattern, model_path):
 | 
						|
                    model_matched = True
 | 
						|
                    model_props["model_type"] = model_type
 | 
						|
 | 
						|
            if model_matched:
 | 
						|
                model_props["filename"] = model_path + f"-{soc}-v2.0.0-1.rknn"
 | 
						|
 | 
						|
                model_props["path"] = model_chache_dir + model_props["filename"]
 | 
						|
 | 
						|
                if not os.path.isfile(model_props["path"]):
 | 
						|
                    self.download_model(model_props["filename"])
 | 
						|
            else:
 | 
						|
                supported_models_str = ", ".join(
 | 
						|
                    model[1:-1] for model in supported_models
 | 
						|
                )
 | 
						|
                raise Exception(
 | 
						|
                    f"Model {model_path} is unsupported. Provide your own model or choose one of the following: {supported_models_str}"
 | 
						|
                )
 | 
						|
 | 
						|
        return model_props
 | 
						|
 | 
						|
    def download_model(self, filename):
 | 
						|
        if not os.path.isdir(model_chache_dir):
 | 
						|
            os.mkdir(model_chache_dir)
 | 
						|
 | 
						|
        urllib.request.urlretrieve(
 | 
						|
            f"https://github.com/MarcA711/rknn-models/releases/download/v2.0.0/{filename}",
 | 
						|
            model_chache_dir + filename,
 | 
						|
        )
 | 
						|
 | 
						|
    def check_config(self, config):
 | 
						|
        if (config.model.width != 320) or (config.model.height != 320):
 | 
						|
            raise Exception(
 | 
						|
                "Make sure to set the model width and height to 320 in your config.yml."
 | 
						|
            )
 | 
						|
 | 
						|
        if config.model.input_pixel_format != "bgr":
 | 
						|
            raise Exception(
 | 
						|
                'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
 | 
						|
            )
 | 
						|
 | 
						|
        if config.model.input_tensor != "nhwc":
 | 
						|
            raise Exception(
 | 
						|
                'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
 | 
						|
            )
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        output = self.rknn.inference(
 | 
						|
            [
 | 
						|
                tensor_input,
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        return self.post_process(output)
 |