mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-09 00:17:00 +01:00
* Refactor post processor to be real time processor * Build out generic API for post processing * Cleanup * Fix
399 lines
14 KiB
Python
399 lines
14 KiB
Python
"""Handle processing images for face detection and recognition."""
|
|
|
|
import base64
|
|
import datetime
|
|
import logging
|
|
import os
|
|
import random
|
|
import string
|
|
from typing import Optional
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import requests
|
|
|
|
from frigate.config import FrigateConfig
|
|
from frigate.const import FACE_DIR, FRIGATE_LOCALHOST, MODEL_CACHE_DIR
|
|
from frigate.util.image import area
|
|
|
|
from ..types import DataProcessorMetrics
|
|
from .api import RealTimeProcessorApi
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
MIN_MATCHING_FACES = 2
|
|
|
|
|
|
class FaceProcessor(RealTimeProcessorApi):
|
|
def __init__(self, config: FrigateConfig, metrics: DataProcessorMetrics):
|
|
super().__init__(config, metrics)
|
|
self.face_config = config.face_recognition
|
|
self.face_detector: cv2.FaceDetectorYN = None
|
|
self.landmark_detector: cv2.face.FacemarkLBF = None
|
|
self.face_recognizer: cv2.face.LBPHFaceRecognizer = None
|
|
self.requires_face_detection = "face" not in self.config.objects.all_objects
|
|
self.detected_faces: dict[str, float] = {}
|
|
|
|
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
|
|
self.model_files = {
|
|
"facedet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
|
|
"landmarkdet.yaml": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
|
|
}
|
|
|
|
if not all(
|
|
os.path.exists(os.path.join(download_path, n))
|
|
for n in self.model_files.keys()
|
|
):
|
|
# conditionally import ModelDownloader
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
self.downloader = ModelDownloader(
|
|
model_name="facedet",
|
|
download_path=download_path,
|
|
file_names=self.model_files.keys(),
|
|
download_func=self.__download_models,
|
|
complete_func=self.__build_detector,
|
|
)
|
|
self.downloader.ensure_model_files()
|
|
else:
|
|
self.__build_detector()
|
|
|
|
self.label_map: dict[int, str] = {}
|
|
self.__build_classifier()
|
|
|
|
def __download_models(self, path: str) -> None:
|
|
try:
|
|
file_name = os.path.basename(path)
|
|
# conditionally import ModelDownloader
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
ModelDownloader.download_from_url(self.model_files[file_name], path)
|
|
except Exception as e:
|
|
logger.error(f"Failed to download {path}: {e}")
|
|
|
|
def __build_detector(self) -> None:
|
|
self.face_detector = cv2.FaceDetectorYN.create(
|
|
"/config/model_cache/facedet/facedet.onnx",
|
|
config="",
|
|
input_size=(320, 320),
|
|
score_threshold=0.8,
|
|
nms_threshold=0.3,
|
|
)
|
|
self.landmark_detector = cv2.face.createFacemarkLBF()
|
|
self.landmark_detector.loadModel("/config/model_cache/facedet/landmarkdet.yaml")
|
|
|
|
def __build_classifier(self) -> None:
|
|
if not self.landmark_detector:
|
|
return None
|
|
|
|
labels = []
|
|
faces = []
|
|
|
|
dir = "/media/frigate/clips/faces"
|
|
for idx, name in enumerate(os.listdir(dir)):
|
|
if name == "train":
|
|
continue
|
|
|
|
face_folder = os.path.join(dir, name)
|
|
|
|
if not os.path.isdir(face_folder):
|
|
continue
|
|
|
|
self.label_map[idx] = name
|
|
for image in os.listdir(face_folder):
|
|
img = cv2.imread(os.path.join(face_folder, image))
|
|
|
|
if img is None:
|
|
continue
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
img = self.__align_face(img, img.shape[1], img.shape[0])
|
|
faces.append(img)
|
|
labels.append(idx)
|
|
|
|
self.recognizer: cv2.face.LBPHFaceRecognizer = (
|
|
cv2.face.LBPHFaceRecognizer_create(
|
|
radius=2, threshold=(1 - self.face_config.min_score) * 1000
|
|
)
|
|
)
|
|
self.recognizer.train(faces, np.array(labels))
|
|
|
|
def __align_face(
|
|
self,
|
|
image: np.ndarray,
|
|
output_width: int,
|
|
output_height: int,
|
|
) -> np.ndarray:
|
|
_, lands = self.landmark_detector.fit(
|
|
image, np.array([(0, 0, image.shape[1], image.shape[0])])
|
|
)
|
|
landmarks: np.ndarray = lands[0][0]
|
|
|
|
# get landmarks for eyes
|
|
leftEyePts = landmarks[42:48]
|
|
rightEyePts = landmarks[36:42]
|
|
|
|
# compute the center of mass for each eye
|
|
leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
|
|
rightEyeCenter = rightEyePts.mean(axis=0).astype("int")
|
|
|
|
# compute the angle between the eye centroids
|
|
dY = rightEyeCenter[1] - leftEyeCenter[1]
|
|
dX = rightEyeCenter[0] - leftEyeCenter[0]
|
|
angle = np.degrees(np.arctan2(dY, dX)) - 180
|
|
|
|
# compute the desired right eye x-coordinate based on the
|
|
# desired x-coordinate of the left eye
|
|
desiredRightEyeX = 1.0 - 0.35
|
|
|
|
# determine the scale of the new resulting image by taking
|
|
# the ratio of the distance between eyes in the *current*
|
|
# image to the ratio of distance between eyes in the
|
|
# *desired* image
|
|
dist = np.sqrt((dX**2) + (dY**2))
|
|
desiredDist = desiredRightEyeX - 0.35
|
|
desiredDist *= output_width
|
|
scale = desiredDist / dist
|
|
|
|
# compute center (x, y)-coordinates (i.e., the median point)
|
|
# between the two eyes in the input image
|
|
# grab the rotation matrix for rotating and scaling the face
|
|
eyesCenter = (
|
|
int((leftEyeCenter[0] + rightEyeCenter[0]) // 2),
|
|
int((leftEyeCenter[1] + rightEyeCenter[1]) // 2),
|
|
)
|
|
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
|
|
|
|
# update the translation component of the matrix
|
|
tX = output_width * 0.5
|
|
tY = output_height * 0.35
|
|
M[0, 2] += tX - eyesCenter[0]
|
|
M[1, 2] += tY - eyesCenter[1]
|
|
|
|
# apply the affine transformation
|
|
return cv2.warpAffine(
|
|
image, M, (output_width, output_height), flags=cv2.INTER_CUBIC
|
|
)
|
|
|
|
def __clear_classifier(self) -> None:
|
|
self.face_recognizer = None
|
|
self.label_map = {}
|
|
|
|
def __detect_face(self, input: np.ndarray) -> tuple[int, int, int, int]:
|
|
"""Detect faces in input image."""
|
|
if not self.face_detector:
|
|
return None
|
|
|
|
self.face_detector.setInputSize((input.shape[1], input.shape[0]))
|
|
faces = self.face_detector.detect(input)
|
|
|
|
if faces is None or faces[1] is None:
|
|
return None
|
|
|
|
face = None
|
|
|
|
for _, potential_face in enumerate(faces[1]):
|
|
raw_bbox = potential_face[0:4].astype(np.uint16)
|
|
x: int = max(raw_bbox[0], 0)
|
|
y: int = max(raw_bbox[1], 0)
|
|
w: int = raw_bbox[2]
|
|
h: int = raw_bbox[3]
|
|
bbox = (x, y, x + w, y + h)
|
|
|
|
if face is None or area(bbox) > area(face):
|
|
face = bbox
|
|
|
|
return face
|
|
|
|
def __classify_face(self, face_image: np.ndarray) -> tuple[str, float] | None:
|
|
if not self.landmark_detector:
|
|
return None
|
|
|
|
if not self.label_map:
|
|
self.__build_classifier()
|
|
|
|
img = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)
|
|
img = self.__align_face(img, img.shape[1], img.shape[0])
|
|
index, distance = self.recognizer.predict(img)
|
|
|
|
if index == -1:
|
|
return None
|
|
|
|
score = 1.0 - (distance / 1000)
|
|
return self.label_map[index], round(score, 2)
|
|
|
|
def __update_metrics(self, duration: float) -> None:
|
|
self.metrics.face_rec_fps.value = (
|
|
self.metrics.face_rec_fps.value * 9 + duration
|
|
) / 10
|
|
|
|
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray):
|
|
"""Look for faces in image."""
|
|
start = datetime.datetime.now().timestamp()
|
|
id = obj_data["id"]
|
|
|
|
# don't run for non person objects
|
|
if obj_data.get("label") != "person":
|
|
logger.debug("Not a processing face for non person object.")
|
|
return
|
|
|
|
# don't overwrite sub label for objects that have a sub label
|
|
# that is not a face
|
|
if obj_data.get("sub_label") and id not in self.detected_faces:
|
|
logger.debug(
|
|
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
|
|
)
|
|
return
|
|
|
|
face: Optional[dict[str, any]] = None
|
|
|
|
if self.requires_face_detection:
|
|
logger.debug("Running manual face detection.")
|
|
person_box = obj_data.get("box")
|
|
|
|
if not person_box:
|
|
return
|
|
|
|
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
|
left, top, right, bottom = person_box
|
|
person = rgb[top:bottom, left:right]
|
|
face_box = self.__detect_face(person)
|
|
|
|
if not face_box:
|
|
logger.debug("Detected no faces for person object.")
|
|
return
|
|
|
|
face_frame = person[
|
|
max(0, face_box[1]) : min(frame.shape[0], face_box[3]),
|
|
max(0, face_box[0]) : min(frame.shape[1], face_box[2]),
|
|
]
|
|
face_frame = cv2.cvtColor(face_frame, cv2.COLOR_RGB2BGR)
|
|
else:
|
|
# don't run for object without attributes
|
|
if not obj_data.get("current_attributes"):
|
|
logger.debug("No attributes to parse.")
|
|
return
|
|
|
|
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
|
|
for attr in attributes:
|
|
if attr.get("label") != "face":
|
|
continue
|
|
|
|
if face is None or attr.get("score", 0.0) > face.get("score", 0.0):
|
|
face = attr
|
|
|
|
# no faces detected in this frame
|
|
if not face:
|
|
return
|
|
|
|
face_box = face.get("box")
|
|
|
|
# check that face is valid
|
|
if not face_box or area(face_box) < self.config.face_recognition.min_area:
|
|
logger.debug(f"Invalid face box {face}")
|
|
return
|
|
|
|
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
|
|
|
|
face_frame = face_frame[
|
|
max(0, face_box[1]) : min(frame.shape[0], face_box[3]),
|
|
max(0, face_box[0]) : min(frame.shape[1], face_box[2]),
|
|
]
|
|
|
|
res = self.__classify_face(face_frame)
|
|
|
|
if not res:
|
|
return
|
|
|
|
sub_label, score = res
|
|
|
|
# calculate the overall face score as the probability * area of face
|
|
# this will help to reduce false positives from small side-angle faces
|
|
# if a large front-on face image may have scored slightly lower but
|
|
# is more likely to be accurate due to the larger face area
|
|
face_score = round(score * face_frame.shape[0] * face_frame.shape[1], 2)
|
|
|
|
logger.debug(
|
|
f"Detected best face for person as: {sub_label} with probability {score} and overall face score {face_score}"
|
|
)
|
|
|
|
if self.config.face_recognition.save_attempts:
|
|
# write face to library
|
|
folder = os.path.join(FACE_DIR, "train")
|
|
file = os.path.join(folder, f"{id}-{sub_label}-{score}-{face_score}.webp")
|
|
os.makedirs(folder, exist_ok=True)
|
|
cv2.imwrite(file, face_frame)
|
|
|
|
if score < self.config.face_recognition.threshold:
|
|
logger.debug(
|
|
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.threshold}"
|
|
)
|
|
self.__update_metrics(datetime.datetime.now().timestamp() - start)
|
|
return
|
|
|
|
if id in self.detected_faces and face_score <= self.detected_faces[id]:
|
|
logger.debug(
|
|
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
|
|
)
|
|
self.__update_metrics(datetime.datetime.now().timestamp() - start)
|
|
return
|
|
|
|
resp = requests.post(
|
|
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
|
|
json={
|
|
"camera": obj_data.get("camera"),
|
|
"subLabel": sub_label,
|
|
"subLabelScore": score,
|
|
},
|
|
)
|
|
|
|
if resp.status_code == 200:
|
|
self.detected_faces[id] = face_score
|
|
|
|
self.__update_metrics(datetime.datetime.now().timestamp() - start)
|
|
|
|
def handle_request(self, request_data) -> dict[str, any] | None:
|
|
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
|
label = request_data["face_name"]
|
|
id = f"{label}-{rand_id}"
|
|
|
|
if request_data.get("cropped"):
|
|
thumbnail = request_data["image"]
|
|
else:
|
|
img = cv2.imdecode(
|
|
np.frombuffer(base64.b64decode(request_data["image"]), dtype=np.uint8),
|
|
cv2.IMREAD_COLOR,
|
|
)
|
|
face_box = self.__detect_face(img)
|
|
|
|
if not face_box:
|
|
return {
|
|
"message": "No face was detected.",
|
|
"success": False,
|
|
}
|
|
|
|
face = img[face_box[1] : face_box[3], face_box[0] : face_box[2]]
|
|
ret, thumbnail = cv2.imencode(
|
|
".webp", face, [int(cv2.IMWRITE_WEBP_QUALITY), 100]
|
|
)
|
|
|
|
# write face to library
|
|
folder = os.path.join(FACE_DIR, label)
|
|
file = os.path.join(folder, f"{id}.webp")
|
|
os.makedirs(folder, exist_ok=True)
|
|
|
|
# save face image
|
|
with open(file, "wb") as output:
|
|
output.write(thumbnail.tobytes())
|
|
|
|
self.__clear_classifier()
|
|
return {
|
|
"message": "Successfully registered face.",
|
|
"success": True,
|
|
}
|
|
|
|
def expire_object(self, object_id: str):
|
|
if object_id in self.detected_faces:
|
|
self.detected_faces.pop(object_id)
|