blakeblackshear.frigate/frigate/objects.py

123 lines
5.1 KiB
Python

import time
import datetime
import threading
import cv2
from object_detection.utils import visualization_utils as vis_util
class ObjectParser(threading.Thread):
def __init__(self, object_queue, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self._object_queue = object_queue
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
while True:
obj = self._object_queue.get()
self._detected_objects.append(obj)
# notify that objects were parsed
with self._objects_parsed:
self._objects_parsed.notify_all()
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
while True:
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<1:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
# wait a bit before checking for more expired frames
time.sleep(0.2)
# Maintains the frame and person with the highest score from the most recent
# motion event
class BestPersonFrame(threading.Thread):
def __init__(self, objects_parsed, recent_frames, detected_objects, motion_changed, motion_regions):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.motion_changed = motion_changed
self.motion_regions = motion_regions
self.best_person = None
self.best_frame = None
def run(self):
motion_start = 0.0
motion_end = 0.0
while True:
# while there is motion
while len([r for r in self.motion_regions if r.is_set()]) > 0:
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
# get the highest scoring person
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
# if there isnt a person, continue
if new_best_person is None:
continue
# if there is no current best_person
if self.best_person is None:
self.best_person = new_best_person
# if there is already a best_person
else:
now = datetime.datetime.now().timestamp()
# if the new best person is a higher score than the current best person
# or the current person is more than 1 minute old, use the new best person
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
self.best_person = new_best_person
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
best_frame = recent_frames[self.best_person['frame_time']]
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
# draw the bounding box on the frame
vis_util.draw_bounding_box_on_image_array(best_frame,
self.best_person['ymin'],
self.best_person['xmin'],
self.best_person['ymax'],
self.best_person['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
use_normalized_coordinates=False)
# convert back to BGR
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
motion_end = datetime.datetime.now().timestamp()
# wait for the global motion flag to change
with self.motion_changed:
self.motion_changed.wait()
motion_start = datetime.datetime.now().timestamp()