mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-07 00:06:57 +01:00
NVR with realtime local object detection for IP cameras
aicameragoogle-coralhome-assistanthome-automationhomeautomationmqttnvrobject-detectionrealtimertsptensorflow
e8763b3697
* Ignore entire __pycache__ folder instead of individual *.pyc files * Ignore .mypy_cache in git * Rework config YAML parsing to use only ruamel.yaml PyYAML silently overrides keys when encountering duplicates, but ruamel raises and exception by default. Since we're already using it elsewhere, dropping PyYAML is an easy choice to make. * Added EnvString in config to slim down runtime_config() * Added gitlens to devcontainer * Automatically call FrigateConfig.runtime_config() runtime_config needed to be called manually before. Now, it's been removed, but the same code is run by a pydantic validator. * Fix handling of missing -segment_time * Removed type annotation on FrigateConfig's parse I'd like to keep them, but then mypy complains about some fundamental errors with how the pydantic model is structured. I'd like to fix it, but I'd rather work towards moving some of this config to the database. |
||
---|---|---|
.cspell | ||
.devcontainer | ||
.github | ||
.vscode | ||
config | ||
docker | ||
docs | ||
frigate | ||
migrations | ||
notebooks | ||
web | ||
.dockerignore | ||
.gitignore | ||
.pylintrc | ||
audio-labelmap.txt | ||
benchmark_motion.py | ||
benchmark.py | ||
CODEOWNERS | ||
cspell.json | ||
docker-compose.yml | ||
labelmap.txt | ||
LICENSE | ||
Makefile | ||
netlify.toml | ||
package-lock.json | ||
process_clip.py | ||
pyproject.toml | ||
README.md |
Frigate - NVR With Realtime Object Detection for IP Cameras
A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with Home Assistant via a custom component
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- Records video with retention settings based on detected objects
- 24/7 recording
- Re-streaming via RTSP to reduce the number of connections to your camera
- WebRTC & MSE support for low-latency live view
Documentation
View the documentation at https://docs.frigate.video
Donations
If you would like to make a donation to support development, please use Github Sponsors.