mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
204 lines
6.8 KiB
Python
204 lines
6.8 KiB
Python
import datetime
|
|
import logging
|
|
import os
|
|
import time
|
|
from functools import reduce
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from flask import (Blueprint, Flask, Response, current_app, jsonify,
|
|
make_response, request)
|
|
from peewee import SqliteDatabase, operator, fn
|
|
from playhouse.shortcuts import model_to_dict
|
|
|
|
from frigate.models import Event
|
|
|
|
bp = Blueprint('frigate', __name__)
|
|
|
|
def create_app(frigate_config, database: SqliteDatabase, camera_metrics, detectors, detected_frames_processor):
|
|
app = Flask(__name__)
|
|
log = logging.getLogger('werkzeug')
|
|
log.setLevel(logging.ERROR)
|
|
|
|
@app.before_request
|
|
def _db_connect():
|
|
database.connect()
|
|
|
|
@app.teardown_request
|
|
def _db_close(exc):
|
|
if not database.is_closed():
|
|
database.close()
|
|
|
|
app.frigate_config = frigate_config
|
|
app.camera_metrics = camera_metrics
|
|
app.detectors = detectors
|
|
app.detected_frames_processor = detected_frames_processor
|
|
|
|
app.register_blueprint(bp)
|
|
|
|
return app
|
|
|
|
@bp.route('/')
|
|
def is_healthy():
|
|
return "Frigate is running. Alive and healthy!"
|
|
|
|
@bp.route('/events/summary')
|
|
def events_summary():
|
|
groups = (
|
|
Event
|
|
.select(
|
|
Event.camera,
|
|
Event.label,
|
|
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch')).alias('day'),
|
|
fn.COUNT(Event.id).alias('count')
|
|
)
|
|
.group_by(
|
|
Event.camera,
|
|
Event.label,
|
|
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch'))
|
|
)
|
|
)
|
|
|
|
return jsonify([e for e in groups.dicts()])
|
|
|
|
@bp.route('/events')
|
|
def events():
|
|
limit = request.args.get('limit', 100)
|
|
camera = request.args.get('camera')
|
|
label = request.args.get('label')
|
|
zone = request.args.get('zone')
|
|
after = request.args.get('after', type=int)
|
|
before = request.args.get('before', type=int)
|
|
|
|
clauses = []
|
|
|
|
if camera:
|
|
clauses.append((Event.camera == camera))
|
|
|
|
if label:
|
|
clauses.append((Event.label == label))
|
|
|
|
if zone:
|
|
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
|
|
|
|
if after:
|
|
clauses.append((Event.start_time >= after))
|
|
|
|
if before:
|
|
clauses.append((Event.start_time <= before))
|
|
|
|
if len(clauses) == 0:
|
|
clauses.append((1 == 1))
|
|
|
|
events = (Event.select()
|
|
.where(reduce(operator.and_, clauses))
|
|
.order_by(Event.start_time.desc())
|
|
.limit(limit))
|
|
|
|
return jsonify([model_to_dict(e) for e in events])
|
|
|
|
@bp.route('/config')
|
|
def config():
|
|
return jsonify(current_app.frigate_config.to_dict())
|
|
|
|
@bp.route('/stats')
|
|
def stats():
|
|
camera_metrics = current_app.camera_metrics
|
|
stats = {}
|
|
|
|
total_detection_fps = 0
|
|
|
|
for name, camera_stats in camera_metrics.items():
|
|
total_detection_fps += camera_stats['detection_fps'].value
|
|
stats[name] = {
|
|
'camera_fps': round(camera_stats['camera_fps'].value, 2),
|
|
'process_fps': round(camera_stats['process_fps'].value, 2),
|
|
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
|
'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
|
'pid': camera_stats['process'].pid,
|
|
'capture_pid': camera_stats['capture_process'].pid
|
|
}
|
|
|
|
stats['detectors'] = {}
|
|
for name, detector in current_app.detectors.items():
|
|
stats['detectors'][name] = {
|
|
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
|
|
'detection_start': detector.detection_start.value,
|
|
'pid': detector.detect_process.pid
|
|
}
|
|
stats['detection_fps'] = round(total_detection_fps, 2)
|
|
|
|
return jsonify(stats)
|
|
|
|
@bp.route('/<camera_name>/<label>/best.jpg')
|
|
def best(camera_name, label):
|
|
if camera_name in current_app.frigate_config.cameras:
|
|
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
|
|
best_frame = best_object.get('frame')
|
|
if best_frame is None:
|
|
best_frame = np.zeros((720,1280,3), np.uint8)
|
|
else:
|
|
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
|
|
|
|
crop = bool(request.args.get('crop', 0, type=int))
|
|
if crop:
|
|
region = best_object.get('region', [0,0,300,300])
|
|
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
|
|
|
height = int(request.args.get('h', str(best_frame.shape[0])))
|
|
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
|
|
|
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
response = make_response(jpg.tobytes())
|
|
response.headers['Content-Type'] = 'image/jpg'
|
|
return response
|
|
else:
|
|
return "Camera named {} not found".format(camera_name), 404
|
|
|
|
@bp.route('/<camera_name>')
|
|
def mjpeg_feed(camera_name):
|
|
fps = int(request.args.get('fps', '3'))
|
|
height = int(request.args.get('h', '360'))
|
|
if camera_name in current_app.frigate_config.cameras:
|
|
# return a multipart response
|
|
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height),
|
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
else:
|
|
return "Camera named {} not found".format(camera_name), 404
|
|
|
|
@bp.route('/<camera_name>/latest.jpg')
|
|
def latest_frame(camera_name):
|
|
if camera_name in current_app.frigate_config.cameras:
|
|
# max out at specified FPS
|
|
frame = current_app.detected_frames_processor.get_current_frame(camera_name)
|
|
if frame is None:
|
|
frame = np.zeros((720,1280,3), np.uint8)
|
|
|
|
height = int(request.args.get('h', str(frame.shape[0])))
|
|
width = int(height*frame.shape[1]/frame.shape[0])
|
|
|
|
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
|
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
response = make_response(jpg.tobytes())
|
|
response.headers['Content-Type'] = 'image/jpg'
|
|
return response
|
|
else:
|
|
return "Camera named {} not found".format(camera_name), 404
|
|
|
|
def imagestream(detected_frames_processor, camera_name, fps, height):
|
|
while True:
|
|
# max out at specified FPS
|
|
time.sleep(1/fps)
|
|
frame = detected_frames_processor.get_current_frame(camera_name, draw=True)
|
|
if frame is None:
|
|
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
|
|
|
width = int(height*frame.shape[1]/frame.shape[0])
|
|
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
|
|
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
yield (b'--frame\r\n'
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|