blakeblackshear.frigate/frigate/test/test_object_detector.py
Martin Weinelt ab50d0b006
Add isort and ruff linter (#6575)
* Add isort and ruff linter

Both linters are pretty common among modern python code bases.

The isort tool provides stable sorting and grouping, as well as pruning
of unused imports.

Ruff is a modern linter, that is very fast due to being written in rust.
It can detect many common issues in a python codebase.

Removes the pylint dev requirement, since ruff replaces it.

* treewide: fix issues detected by ruff

* treewide: fix bare except clauses

* .devcontainer: Set up isort

* treewide: optimize imports

* treewide: apply black

* treewide: make regex patterns raw strings

This is necessary for escape sequences to be properly recognized.
2023-05-29 05:31:17 -05:00

138 lines
5.0 KiB
Python

import unittest
from unittest.mock import Mock, patch
import numpy as np
from pydantic import parse_obj_as
import frigate.detectors as detectors
import frigate.object_detection
from frigate.config import DetectorConfig, InputTensorEnum, ModelConfig
from frigate.detectors import DetectorTypeEnum
class TestLocalObjectDetector(unittest.TestCase):
def test_localdetectorprocess_should_only_create_specified_detector_type(self):
for det_type in detectors.api_types:
with self.subTest(det_type=det_type):
with patch.dict(
"frigate.detectors.api_types",
{det_type: Mock() for det_type in DetectorTypeEnum},
):
test_cfg = parse_obj_as(
DetectorConfig, ({"type": det_type, "model": {}})
)
test_cfg.model.path = "/test/modelpath"
test_obj = frigate.object_detection.LocalObjectDetector(
detector_config=test_cfg
)
assert test_obj is not None
for api_key, mock_detector in detectors.api_types.items():
if test_cfg.type == api_key:
mock_detector.assert_called_once_with(test_cfg)
else:
mock_detector.assert_not_called()
@patch.dict(
"frigate.detectors.api_types",
{det_type: Mock() for det_type in DetectorTypeEnum},
)
def test_detect_raw_given_tensor_input_should_return_api_detect_raw_result(self):
mock_cputfl = detectors.api_types[DetectorTypeEnum.cpu]
TEST_DATA = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
TEST_DETECT_RESULT = np.ndarray([1, 2, 4, 8, 16, 32])
test_obj_detect = frigate.object_detection.LocalObjectDetector(
detector_config=parse_obj_as(DetectorConfig, {"type": "cpu", "model": {}})
)
mock_det_api = mock_cputfl.return_value
mock_det_api.detect_raw.return_value = TEST_DETECT_RESULT
test_result = test_obj_detect.detect_raw(TEST_DATA)
mock_det_api.detect_raw.assert_called_once_with(tensor_input=TEST_DATA)
assert test_result is mock_det_api.detect_raw.return_value
@patch.dict(
"frigate.detectors.api_types",
{det_type: Mock() for det_type in DetectorTypeEnum},
)
def test_detect_raw_given_tensor_input_should_call_api_detect_raw_with_transposed_tensor(
self,
):
mock_cputfl = detectors.api_types[DetectorTypeEnum.cpu]
TEST_DATA = np.zeros((1, 32, 32, 3), np.uint8)
TEST_DETECT_RESULT = np.ndarray([1, 2, 4, 8, 16, 32])
test_cfg = parse_obj_as(DetectorConfig, {"type": "cpu", "model": {}})
test_cfg.model.input_tensor = InputTensorEnum.nchw
test_obj_detect = frigate.object_detection.LocalObjectDetector(
detector_config=test_cfg
)
mock_det_api = mock_cputfl.return_value
mock_det_api.detect_raw.return_value = TEST_DETECT_RESULT
test_result = test_obj_detect.detect_raw(TEST_DATA)
mock_det_api.detect_raw.assert_called_once()
assert (
mock_det_api.detect_raw.call_args.kwargs["tensor_input"].shape
== np.zeros((1, 3, 32, 32)).shape
)
assert test_result is mock_det_api.detect_raw.return_value
@patch.dict(
"frigate.detectors.api_types",
{det_type: Mock() for det_type in DetectorTypeEnum},
)
@patch("frigate.object_detection.load_labels")
def test_detect_given_tensor_input_should_return_lfiltered_detections(
self, mock_load_labels
):
mock_cputfl = detectors.api_types[DetectorTypeEnum.cpu]
TEST_DATA = np.zeros((1, 32, 32, 3), np.uint8)
TEST_DETECT_RAW = [
[2, 0.9, 5, 4, 3, 2],
[1, 0.5, 8, 7, 6, 5],
[0, 0.4, 2, 4, 8, 16],
]
TEST_DETECT_RESULT = [
("label-3", 0.9, (5, 4, 3, 2)),
("label-2", 0.5, (8, 7, 6, 5)),
]
TEST_LABEL_FILE = "/test_labels.txt"
mock_load_labels.return_value = [
"label-1",
"label-2",
"label-3",
"label-4",
"label-5",
]
test_cfg = parse_obj_as(DetectorConfig, {"type": "cpu", "model": {}})
test_cfg.model = ModelConfig()
test_obj_detect = frigate.object_detection.LocalObjectDetector(
detector_config=test_cfg,
labels=TEST_LABEL_FILE,
)
mock_load_labels.assert_called_once_with(TEST_LABEL_FILE)
mock_det_api = mock_cputfl.return_value
mock_det_api.detect_raw.return_value = TEST_DETECT_RAW
test_result = test_obj_detect.detect(tensor_input=TEST_DATA, threshold=0.5)
mock_det_api.detect_raw.assert_called_once()
assert (
mock_det_api.detect_raw.call_args.kwargs["tensor_input"].shape
== np.zeros((1, 32, 32, 3)).shape
)
assert test_result == TEST_DETECT_RESULT