mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-21 20:06:12 +01:00
237 lines
7.8 KiB
Python
237 lines
7.8 KiB
Python
from enum import Enum
|
|
from typing import Dict, List, Optional
|
|
|
|
from pydantic import ConfigDict, Field
|
|
|
|
from .base import FrigateBaseModel
|
|
|
|
__all__ = [
|
|
"CameraFaceRecognitionConfig",
|
|
"CameraLicensePlateRecognitionConfig",
|
|
"FaceRecognitionConfig",
|
|
"SemanticSearchConfig",
|
|
"LicensePlateRecognitionConfig",
|
|
]
|
|
|
|
|
|
class SemanticSearchModelEnum(str, Enum):
|
|
jinav1 = "jinav1"
|
|
jinav2 = "jinav2"
|
|
|
|
|
|
class EnrichmentsDeviceEnum(str, Enum):
|
|
GPU = "GPU"
|
|
CPU = "CPU"
|
|
|
|
|
|
class AudioTranscriptionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable audio transcription.")
|
|
language: str = Field(
|
|
default="en",
|
|
title="Language abbreviation to use for audio event transcription/translation.",
|
|
)
|
|
device: Optional[EnrichmentsDeviceEnum] = Field(
|
|
default=EnrichmentsDeviceEnum.CPU,
|
|
title="The device used for license plate recognition.",
|
|
)
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
enabled_in_config: Optional[bool] = Field(
|
|
default=None, title="Keep track of original state of camera."
|
|
)
|
|
live_enabled: Optional[bool] = Field(
|
|
default=False, title="Enable live transcriptions."
|
|
)
|
|
|
|
|
|
class BirdClassificationConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable bird classification.")
|
|
threshold: float = Field(
|
|
default=0.9,
|
|
title="Minimum classification score required to be considered a match.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
|
|
|
|
class CustomClassificationStateCameraConfig(FrigateBaseModel):
|
|
crop: list[int, int, int, int] = Field(
|
|
title="Crop of image frame on this camera to run classification on."
|
|
)
|
|
threshold: float = Field(
|
|
default=0.8, title="Classification score threshold to change the state."
|
|
)
|
|
|
|
|
|
class CustomClassificationStateConfig(FrigateBaseModel):
|
|
cameras: Dict[str, CustomClassificationStateCameraConfig] = Field(
|
|
title="Cameras to run classification on."
|
|
)
|
|
motion: bool = Field(
|
|
default=False,
|
|
title="If classification should be run when motion is detected in the crop.",
|
|
)
|
|
interval: int | None = Field(
|
|
default=None,
|
|
title="Interval to run classification on in seconds.",
|
|
gt=0,
|
|
)
|
|
|
|
|
|
class CustomClassificationObjectConfig(FrigateBaseModel):
|
|
objects: list[str] = Field(title="Object types to classify.")
|
|
|
|
|
|
class CustomClassificationConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=True, title="Enable running the model.")
|
|
name: str | None = Field(default=None, title="Name of classification model.")
|
|
object_config: CustomClassificationObjectConfig | None = Field(default=None)
|
|
state_config: CustomClassificationStateConfig | None = Field(default=None)
|
|
|
|
|
|
class ClassificationConfig(FrigateBaseModel):
|
|
bird: BirdClassificationConfig = Field(
|
|
default_factory=BirdClassificationConfig, title="Bird classification config."
|
|
)
|
|
custom: Dict[str, CustomClassificationConfig] = Field(
|
|
default={}, title="Custom Classification Model Configs."
|
|
)
|
|
|
|
|
|
class SemanticSearchConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable semantic search.")
|
|
reindex: Optional[bool] = Field(
|
|
default=False, title="Reindex all tracked objects on startup."
|
|
)
|
|
model: Optional[SemanticSearchModelEnum] = Field(
|
|
default=SemanticSearchModelEnum.jinav1,
|
|
title="The CLIP model to use for semantic search.",
|
|
)
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
|
|
|
|
class FaceRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable face recognition.")
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
unknown_score: float = Field(
|
|
title="Minimum face distance score required to be marked as a potential match.",
|
|
default=0.8,
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
detection_threshold: float = Field(
|
|
default=0.7,
|
|
title="Minimum face detection score required to be considered a face.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
recognition_threshold: float = Field(
|
|
default=0.9,
|
|
title="Minimum face distance score required to be considered a match.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_area: int = Field(
|
|
default=750, title="Min area of face box to consider running face recognition."
|
|
)
|
|
min_faces: int = Field(
|
|
default=1,
|
|
gt=0,
|
|
le=6,
|
|
title="Min face recognitions for the sub label to be applied to the person object.",
|
|
)
|
|
save_attempts: int = Field(
|
|
default=100, ge=0, title="Number of face attempts to save in the train tab."
|
|
)
|
|
blur_confidence_filter: bool = Field(
|
|
default=True, title="Apply blur quality filter to face confidence."
|
|
)
|
|
|
|
|
|
class CameraFaceRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable face recognition.")
|
|
min_area: int = Field(
|
|
default=750, title="Min area of face box to consider running face recognition."
|
|
)
|
|
|
|
model_config = ConfigDict(extra="forbid", protected_namespaces=())
|
|
|
|
|
|
class LicensePlateRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable license plate recognition.")
|
|
device: Optional[EnrichmentsDeviceEnum] = Field(
|
|
default=EnrichmentsDeviceEnum.CPU,
|
|
title="The device used for license plate recognition.",
|
|
)
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
detection_threshold: float = Field(
|
|
default=0.7,
|
|
title="License plate object confidence score required to begin running recognition.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_area: int = Field(
|
|
default=1000,
|
|
title="Minimum area of license plate to begin running recognition.",
|
|
)
|
|
recognition_threshold: float = Field(
|
|
default=0.9,
|
|
title="Recognition confidence score required to add the plate to the object as a sub label.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_plate_length: int = Field(
|
|
default=4,
|
|
title="Minimum number of characters a license plate must have to be added to the object as a sub label.",
|
|
)
|
|
format: Optional[str] = Field(
|
|
default=None,
|
|
title="Regular expression for the expected format of license plate.",
|
|
)
|
|
match_distance: int = Field(
|
|
default=1,
|
|
title="Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate.",
|
|
ge=0,
|
|
)
|
|
known_plates: Optional[Dict[str, List[str]]] = Field(
|
|
default={}, title="Known plates to track (strings or regular expressions)."
|
|
)
|
|
enhancement: int = Field(
|
|
default=0,
|
|
title="Amount of contrast adjustment and denoising to apply to license plate images before recognition.",
|
|
ge=0,
|
|
le=10,
|
|
)
|
|
debug_save_plates: bool = Field(
|
|
default=False,
|
|
title="Save plates captured for LPR for debugging purposes.",
|
|
)
|
|
|
|
|
|
class CameraLicensePlateRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable license plate recognition.")
|
|
expire_time: int = Field(
|
|
default=3,
|
|
title="Expire plates not seen after number of seconds (for dedicated LPR cameras only).",
|
|
gt=0,
|
|
)
|
|
min_area: int = Field(
|
|
default=1000,
|
|
title="Minimum area of license plate to begin running recognition.",
|
|
)
|
|
enhancement: int = Field(
|
|
default=0,
|
|
title="Amount of contrast adjustment and denoising to apply to license plate images before recognition.",
|
|
ge=0,
|
|
le=10,
|
|
)
|
|
|
|
model_config = ConfigDict(extra="forbid", protected_namespaces=())
|