1
0
mirror of https://github.com/blakeblackshear/frigate.git synced 2025-01-12 00:06:43 +01:00
blakeblackshear.frigate/frigate/objects.py
2022-04-16 09:08:10 -05:00

247 lines
9.3 KiB
Python

import copy
import datetime
import itertools
import multiprocessing as mp
import random
import string
import threading
import time
from collections import defaultdict
import cv2
import numpy as np
from scipy.spatial import distance as dist
from frigate.config import DetectConfig
from frigate.util import intersection_over_union
class ObjectTracker:
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.disappeared = {}
self.positions = {}
self.max_disappeared = config.max_disappeared
self.detect_config = config
def register(self, index, obj):
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj["id"] = id
obj["start_time"] = obj["frame_time"]
obj["motionless_count"] = 0
obj["position_changes"] = 0
self.tracked_objects[id] = obj
self.disappeared[id] = 0
self.positions[id] = {
"xmins": [],
"ymins": [],
"xmaxs": [],
"ymaxs": [],
"xmin": 0,
"ymin": 0,
"xmax": self.detect_config.width,
"ymax": self.detect_config.height,
}
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
# tracks the current position of the object based on the last N bounding boxes
# returns False if the object has moved outside its previous position
def update_position(self, id, box):
position = self.positions[id]
position_box = (
position["xmin"],
position["ymin"],
position["xmax"],
position["ymax"],
)
xmin, ymin, xmax, ymax = box
iou = intersection_over_union(position_box, box)
# if the iou drops below the threshold
# assume the object has moved to a new position and reset the computed box
if iou < 0.6:
self.positions[id] = {
"xmins": [xmin],
"ymins": [ymin],
"xmaxs": [xmax],
"ymaxs": [ymax],
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return False
# if there are less than 10 entries for the position, add the bounding box
# and recompute the position box
if len(position["xmins"]) < 10:
position["xmins"].append(xmin)
position["ymins"].append(ymin)
position["xmaxs"].append(xmax)
position["ymaxs"].append(ymax)
# by using percentiles here, we hopefully remove outliers
position["xmin"] = np.percentile(position["xmins"], 15)
position["ymin"] = np.percentile(position["ymins"], 15)
position["xmax"] = np.percentile(position["xmaxs"], 85)
position["ymax"] = np.percentile(position["ymaxs"], 85)
return True
def is_expired(self, id):
obj = self.tracked_objects[id]
# get the max frames for this label type or the default
max_frames = self.detect_config.stationary.max_frames.objects.get(
obj["label"], self.detect_config.stationary.max_frames.default
)
# if there is no max_frames for this label type, continue
if max_frames is None:
return False
# if the object has exceeded the max_frames setting, deregister
if (
obj["motionless_count"] - self.detect_config.stationary.threshold
> max_frames
):
return True
return False
def update(self, id, new_obj):
self.disappeared[id] = 0
# update the motionless count if the object has not moved to a new position
if self.update_position(id, new_obj["box"]):
self.tracked_objects[id]["motionless_count"] += 1
if self.is_expired(id):
self.deregister(id)
return
else:
# register the first position change and then only increment if
# the object was previously stationary
if (
self.tracked_objects[id]["position_changes"] == 0
or self.tracked_objects[id]["motionless_count"]
>= self.detect_config.stationary.threshold
):
self.tracked_objects[id]["position_changes"] += 1
self.tracked_objects[id]["motionless_count"] = 0
self.tracked_objects[id].update(new_obj)
def update_frame_times(self, frame_time):
for id in list(self.tracked_objects.keys()):
self.tracked_objects[id]["frame_time"] = frame_time
self.tracked_objects[id]["motionless_count"] += 1
if self.is_expired(id):
self.deregister(id)
def match_and_update(self, frame_time, new_objects):
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj[0]].append(
{
"label": obj[0],
"score": obj[1],
"box": obj[2],
"area": obj[3],
"ratio": obj[4],
"region": obj[5],
"frame_time": frame_time,
}
)
# update any tracked objects with labels that are not
# seen in the current objects and deregister if needed
for obj in list(self.tracked_objects.values()):
if not obj["label"] in new_object_groups:
if self.disappeared[obj["id"]] >= self.max_disappeared:
self.deregister(obj["id"])
else:
self.disappeared[obj["id"]] += 1
if len(new_objects) == 0:
return
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [
o for o in self.tracked_objects.values() if o["label"] == label
]
current_ids = [o["id"] for o in current_objects]
current_centroids = np.array([o["centroid"] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj["box"][0] + obj["box"][2]) / 2.0)
centroid_y = int((obj["box"][1] + obj["box"][3]) / 2.0)
obj["centroid"] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
continue
new_centroids = np.array([o["centroid"] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each current centroid to a new
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the smallest
# value in each row (i.e. the distance from each current object to
# the closest new object) and then (2) sort the row indexes based
# on their minimum values so that the row with the smallest
# distance (the best match) is at the *front* of the index list
rows = D.min(axis=1).argsort()
# next, we determine which new object each existing object matched
# against, and apply the same sorting as was applied previously
cols = D.argmin(axis=1)[rows]
# many current objects may register with each new object, so only
# match the closest ones. unique returns the indices of the first
# occurrences of each value, and because the rows are sorted by
# distance, this will be index of the closest match
_, index = np.unique(cols, return_index=True)
rows = rows[index]
cols = cols[index]
# loop over the combination of the (row, column) index tuples
for row, col in zip(rows, cols):
# grab the object ID for the current row, set its new centroid,
# and reset the disappeared counter
objectID = current_ids[row]
self.update(objectID, group[col])
# compute the row and column indices we have NOT yet examined
unusedRows = set(range(D.shape[0])).difference(rows)
unusedCols = set(range(D.shape[1])).difference(cols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
id = current_ids[row]
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(col, group[col])