mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
ab50d0b006
* Add isort and ruff linter Both linters are pretty common among modern python code bases. The isort tool provides stable sorting and grouping, as well as pruning of unused imports. Ruff is a modern linter, that is very fast due to being written in rust. It can detect many common issues in a python codebase. Removes the pylint dev requirement, since ruff replaces it. * treewide: fix issues detected by ruff * treewide: fix bare except clauses * .devcontainer: Set up isort * treewide: optimize imports * treewide: apply black * treewide: make regex patterns raw strings This is necessary for escape sequences to be properly recognized.
314 lines
11 KiB
Python
314 lines
11 KiB
Python
import ctypes
|
|
import logging
|
|
|
|
import numpy as np
|
|
|
|
try:
|
|
import tensorrt as trt
|
|
from cuda import cuda
|
|
|
|
TRT_SUPPORT = True
|
|
except ModuleNotFoundError:
|
|
TRT_SUPPORT = False
|
|
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "tensorrt"
|
|
|
|
if TRT_SUPPORT:
|
|
|
|
class TrtLogger(trt.ILogger):
|
|
def __init__(self):
|
|
trt.ILogger.__init__(self)
|
|
|
|
def log(self, severity, msg):
|
|
logger.log(self.getSeverity(severity), msg)
|
|
|
|
def getSeverity(self, sev: trt.ILogger.Severity) -> int:
|
|
if sev == trt.ILogger.VERBOSE:
|
|
return logging.DEBUG
|
|
elif sev == trt.ILogger.INFO:
|
|
return logging.INFO
|
|
elif sev == trt.ILogger.WARNING:
|
|
return logging.WARNING
|
|
elif sev == trt.ILogger.ERROR:
|
|
return logging.ERROR
|
|
elif sev == trt.ILogger.INTERNAL_ERROR:
|
|
return logging.CRITICAL
|
|
else:
|
|
return logging.DEBUG
|
|
|
|
|
|
class TensorRTDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: int = Field(default=0, title="GPU Device Index")
|
|
|
|
|
|
class HostDeviceMem(object):
|
|
"""Simple helper data class that's a little nicer to use than a 2-tuple."""
|
|
|
|
def __init__(self, host_mem, device_mem, nbytes, size):
|
|
self.host = host_mem
|
|
err, self.host_dev = cuda.cuMemHostGetDevicePointer(self.host, 0)
|
|
self.device = device_mem
|
|
self.nbytes = nbytes
|
|
self.size = size
|
|
|
|
def __str__(self):
|
|
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
|
|
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
def __del__(self):
|
|
cuda.cuMemFreeHost(self.host)
|
|
cuda.cuMemFree(self.device)
|
|
|
|
|
|
class TensorRtDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def _load_engine(self, model_path):
|
|
try:
|
|
trt.init_libnvinfer_plugins(self.trt_logger, "")
|
|
|
|
ctypes.cdll.LoadLibrary("/trt-models/libyolo_layer.so")
|
|
except OSError as e:
|
|
logger.error(
|
|
"ERROR: failed to load libraries. %s",
|
|
e,
|
|
)
|
|
|
|
with open(model_path, "rb") as f, trt.Runtime(self.trt_logger) as runtime:
|
|
return runtime.deserialize_cuda_engine(f.read())
|
|
|
|
def _get_input_shape(self):
|
|
"""Get input shape of the TensorRT YOLO engine."""
|
|
binding = self.engine[0]
|
|
assert self.engine.binding_is_input(binding)
|
|
binding_dims = self.engine.get_binding_shape(binding)
|
|
if len(binding_dims) == 4:
|
|
return (
|
|
tuple(binding_dims[2:]),
|
|
trt.nptype(self.engine.get_binding_dtype(binding)),
|
|
)
|
|
elif len(binding_dims) == 3:
|
|
return (
|
|
tuple(binding_dims[1:]),
|
|
trt.nptype(self.engine.get_binding_dtype(binding)),
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
|
)
|
|
|
|
def _allocate_buffers(self):
|
|
"""Allocates all host/device in/out buffers required for an engine."""
|
|
inputs = []
|
|
outputs = []
|
|
bindings = []
|
|
output_idx = 0
|
|
for binding in self.engine:
|
|
binding_dims = self.engine.get_binding_shape(binding)
|
|
if len(binding_dims) == 4:
|
|
# explicit batch case (TensorRT 7+)
|
|
size = trt.volume(binding_dims)
|
|
elif len(binding_dims) == 3:
|
|
# implicit batch case (TensorRT 6 or older)
|
|
size = trt.volume(binding_dims) * self.engine.max_batch_size
|
|
else:
|
|
raise ValueError(
|
|
"bad dims of binding %s: %s" % (binding, str(binding_dims))
|
|
)
|
|
nbytes = size * self.engine.get_binding_dtype(binding).itemsize
|
|
# Allocate host and device buffers
|
|
err, host_mem = cuda.cuMemHostAlloc(
|
|
nbytes, Flags=cuda.CU_MEMHOSTALLOC_DEVICEMAP
|
|
)
|
|
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAllocHost returned {err}"
|
|
logger.debug(
|
|
f"Allocated Tensor Binding {binding} Memory {nbytes} Bytes ({size} * {self.engine.get_binding_dtype(binding)})"
|
|
)
|
|
err, device_mem = cuda.cuMemAlloc(nbytes)
|
|
assert err is cuda.CUresult.CUDA_SUCCESS, f"cuMemAlloc returned {err}"
|
|
# Append the device buffer to device bindings.
|
|
bindings.append(int(device_mem))
|
|
# Append to the appropriate list.
|
|
if self.engine.binding_is_input(binding):
|
|
logger.debug(f"Input has Shape {binding_dims}")
|
|
inputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
|
else:
|
|
# each grid has 3 anchors, each anchor generates a detection
|
|
# output of 7 float32 values
|
|
assert size % 7 == 0, f"output size was {size}"
|
|
logger.debug(f"Output has Shape {binding_dims}")
|
|
outputs.append(HostDeviceMem(host_mem, device_mem, nbytes, size))
|
|
output_idx += 1
|
|
assert len(inputs) == 1, f"inputs len was {len(inputs)}"
|
|
assert len(outputs) == 1, f"output len was {len(outputs)}"
|
|
return inputs, outputs, bindings
|
|
|
|
def _do_inference(self):
|
|
"""do_inference (for TensorRT 7.0+)
|
|
This function is generalized for multiple inputs/outputs for full
|
|
dimension networks.
|
|
Inputs and outputs are expected to be lists of HostDeviceMem objects.
|
|
"""
|
|
# Push CUDA Context
|
|
cuda.cuCtxPushCurrent(self.cu_ctx)
|
|
|
|
# Transfer input data to the GPU.
|
|
[
|
|
cuda.cuMemcpyHtoDAsync(inp.device, inp.host, inp.nbytes, self.stream)
|
|
for inp in self.inputs
|
|
]
|
|
|
|
# Run inference.
|
|
if not self.context.execute_async_v2(
|
|
bindings=self.bindings, stream_handle=self.stream
|
|
):
|
|
logger.warn("Execute returned false")
|
|
|
|
# Transfer predictions back from the GPU.
|
|
[
|
|
cuda.cuMemcpyDtoHAsync(out.host, out.device, out.nbytes, self.stream)
|
|
for out in self.outputs
|
|
]
|
|
|
|
# Synchronize the stream
|
|
cuda.cuStreamSynchronize(self.stream)
|
|
|
|
# Pop CUDA Context
|
|
cuda.cuCtxPopCurrent()
|
|
|
|
# Return only the host outputs.
|
|
return [
|
|
np.array(
|
|
(ctypes.c_float * out.size).from_address(out.host), dtype=np.float32
|
|
)
|
|
for out in self.outputs
|
|
]
|
|
|
|
def __init__(self, detector_config: TensorRTDetectorConfig):
|
|
assert (
|
|
TRT_SUPPORT
|
|
), f"TensorRT libraries not found, {DETECTOR_KEY} detector not present"
|
|
|
|
(cuda_err,) = cuda.cuInit(0)
|
|
assert (
|
|
cuda_err == cuda.CUresult.CUDA_SUCCESS
|
|
), f"Failed to initialize cuda {cuda_err}"
|
|
err, dev_count = cuda.cuDeviceGetCount()
|
|
logger.debug(f"Num Available Devices: {dev_count}")
|
|
assert (
|
|
detector_config.device < dev_count
|
|
), f"Invalid TensorRT Device Config. Device {detector_config.device} Invalid."
|
|
err, self.cu_ctx = cuda.cuCtxCreate(
|
|
cuda.CUctx_flags.CU_CTX_MAP_HOST, detector_config.device
|
|
)
|
|
|
|
self.conf_th = 0.4 ##TODO: model config parameter
|
|
self.nms_threshold = 0.4
|
|
err, self.stream = cuda.cuStreamCreate(0)
|
|
self.trt_logger = TrtLogger()
|
|
self.engine = self._load_engine(detector_config.model.path)
|
|
self.input_shape = self._get_input_shape()
|
|
|
|
try:
|
|
self.context = self.engine.create_execution_context()
|
|
(
|
|
self.inputs,
|
|
self.outputs,
|
|
self.bindings,
|
|
) = self._allocate_buffers()
|
|
except Exception as e:
|
|
logger.error(e)
|
|
raise RuntimeError("fail to allocate CUDA resources") from e
|
|
|
|
logger.debug("TensorRT loaded. Input shape is %s", self.input_shape)
|
|
logger.debug("TensorRT version is %s", trt.__version__[0])
|
|
|
|
def __del__(self):
|
|
"""Free CUDA memories."""
|
|
if self.outputs is not None:
|
|
del self.outputs
|
|
if self.inputs is not None:
|
|
del self.inputs
|
|
if self.stream is not None:
|
|
cuda.cuStreamDestroy(self.stream)
|
|
del self.stream
|
|
del self.engine
|
|
del self.context
|
|
del self.trt_logger
|
|
cuda.cuCtxDestroy(self.cu_ctx)
|
|
|
|
def _postprocess_yolo(self, trt_outputs, conf_th):
|
|
"""Postprocess TensorRT outputs.
|
|
# Args
|
|
trt_outputs: a list of 2 or 3 tensors, where each tensor
|
|
contains a multiple of 7 float32 numbers in
|
|
the order of [x, y, w, h, box_confidence, class_id, class_prob]
|
|
conf_th: confidence threshold
|
|
# Returns
|
|
boxes, scores, classes
|
|
"""
|
|
# filter low-conf detections and concatenate results of all yolo layers
|
|
detections = []
|
|
for o in trt_outputs:
|
|
dets = o.reshape((-1, 7))
|
|
dets = dets[dets[:, 4] * dets[:, 6] >= conf_th]
|
|
detections.append(dets)
|
|
detections = np.concatenate(detections, axis=0)
|
|
|
|
return detections
|
|
|
|
def detect_raw(self, tensor_input):
|
|
# Input tensor has the shape of the [height, width, 3]
|
|
# Output tensor of float32 of shape [20, 6] where:
|
|
# O - class id
|
|
# 1 - score
|
|
# 2..5 - a value between 0 and 1 of the box: [top, left, bottom, right]
|
|
|
|
# normalize
|
|
if self.input_shape[-1] != trt.int8:
|
|
tensor_input = tensor_input.astype(self.input_shape[-1])
|
|
tensor_input /= 255.0
|
|
|
|
self.inputs[0].host = np.ascontiguousarray(
|
|
tensor_input.astype(self.input_shape[-1])
|
|
)
|
|
trt_outputs = self._do_inference()
|
|
|
|
raw_detections = self._postprocess_yolo(trt_outputs, self.conf_th)
|
|
|
|
if len(raw_detections) == 0:
|
|
return np.zeros((20, 6), np.float32)
|
|
|
|
# raw_detections: Nx7 numpy arrays of
|
|
# [[x, y, w, h, box_confidence, class_id, class_prob],
|
|
|
|
# Calculate score as box_confidence x class_prob
|
|
raw_detections[:, 4] = raw_detections[:, 4] * raw_detections[:, 6]
|
|
# Reorder elements by the score, best on top, remove class_prob
|
|
ordered = raw_detections[raw_detections[:, 4].argsort()[::-1]][:, 0:6]
|
|
# transform width to right with clamp to 0..1
|
|
ordered[:, 2] = np.clip(ordered[:, 2] + ordered[:, 0], 0, 1)
|
|
# transform height to bottom with clamp to 0..1
|
|
ordered[:, 3] = np.clip(ordered[:, 3] + ordered[:, 1], 0, 1)
|
|
# put result into the correct order and limit to top 20
|
|
detections = ordered[:, [5, 4, 1, 0, 3, 2]][:20]
|
|
# pad to 20x6 shape
|
|
append_cnt = 20 - len(detections)
|
|
if append_cnt > 0:
|
|
detections = np.append(
|
|
detections, np.zeros((append_cnt, 6), np.float32), axis=0
|
|
)
|
|
|
|
return detections
|