mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-06-09 01:16:08 +02:00
* Catch error and show toast when failing to delete review items * i18n keys * add link to speed estimation docs in zone edit pane * Implement reset of tracked object update for each camera * Cleanup * register mqtt callbacks for toggling alerts and detections * clarify snapshots docs * clarify semantic search reindexing * add ukrainian * adjust date granularity for last recording time The api endpoint only returns granularity down to the day * Add amd hardware * fix crash in face library on initial start after enabling * Fix recordings view for mobile landscape The events view incorrectly was displaying two columns on landscape view and it only took up 20% of the screen width. Additionally, in landscape view the timeline was too wide (especially on iPads of various screen sizes) and would overlap the main video * face rec overfitting instructions * Clarify * face docs * clarify * clarify --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
158 lines
5.1 KiB
Python
158 lines
5.1 KiB
Python
"""Handle processing images to classify birds."""
|
|
|
|
import logging
|
|
import os
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from frigate.comms.event_metadata_updater import (
|
|
EventMetadataPublisher,
|
|
EventMetadataTypeEnum,
|
|
)
|
|
from frigate.config import FrigateConfig
|
|
from frigate.const import MODEL_CACHE_DIR
|
|
from frigate.util.object import calculate_region
|
|
|
|
from ..types import DataProcessorMetrics
|
|
from .api import RealTimeProcessorApi
|
|
|
|
try:
|
|
from tflite_runtime.interpreter import Interpreter
|
|
except ModuleNotFoundError:
|
|
from tensorflow.lite.python.interpreter import Interpreter
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BirdRealTimeProcessor(RealTimeProcessorApi):
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
sub_label_publisher: EventMetadataPublisher,
|
|
metrics: DataProcessorMetrics,
|
|
):
|
|
super().__init__(config, metrics)
|
|
self.interpreter: Interpreter = None
|
|
self.sub_label_publisher = sub_label_publisher
|
|
self.tensor_input_details: dict[str, any] = None
|
|
self.tensor_output_details: dict[str, any] = None
|
|
self.detected_birds: dict[str, float] = {}
|
|
self.labelmap: dict[int, str] = {}
|
|
|
|
download_path = os.path.join(MODEL_CACHE_DIR, "bird")
|
|
self.model_files = {
|
|
"bird.tflite": "https://raw.githubusercontent.com/google-coral/test_data/master/mobilenet_v2_1.0_224_inat_bird_quant.tflite",
|
|
"birdmap.txt": "https://raw.githubusercontent.com/google-coral/test_data/master/inat_bird_labels.txt",
|
|
}
|
|
|
|
if not all(
|
|
os.path.exists(os.path.join(download_path, n))
|
|
for n in self.model_files.keys()
|
|
):
|
|
# conditionally import ModelDownloader
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
self.downloader = ModelDownloader(
|
|
model_name="bird",
|
|
download_path=download_path,
|
|
file_names=self.model_files.keys(),
|
|
download_func=self.__download_models,
|
|
complete_func=self.__build_detector,
|
|
)
|
|
self.downloader.ensure_model_files()
|
|
else:
|
|
self.__build_detector()
|
|
|
|
def __download_models(self, path: str) -> None:
|
|
try:
|
|
file_name = os.path.basename(path)
|
|
|
|
# conditionally import ModelDownloader
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
ModelDownloader.download_from_url(self.model_files[file_name], path)
|
|
except Exception as e:
|
|
logger.error(f"Failed to download {path}: {e}")
|
|
|
|
def __build_detector(self) -> None:
|
|
self.interpreter = Interpreter(
|
|
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
|
num_threads=2,
|
|
)
|
|
self.interpreter.allocate_tensors()
|
|
self.tensor_input_details = self.interpreter.get_input_details()
|
|
self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
|
i = 0
|
|
|
|
with open(os.path.join(MODEL_CACHE_DIR, "bird/birdmap.txt")) as f:
|
|
line = f.readline()
|
|
while line:
|
|
start = line.find("(")
|
|
end = line.find(")")
|
|
self.labelmap[i] = line[start + 1 : end]
|
|
i += 1
|
|
line = f.readline()
|
|
|
|
def process_frame(self, obj_data, frame):
|
|
if obj_data["label"] != "bird":
|
|
return
|
|
|
|
x, y, x2, y2 = calculate_region(
|
|
frame.shape,
|
|
obj_data["box"][0],
|
|
obj_data["box"][1],
|
|
obj_data["box"][2],
|
|
obj_data["box"][3],
|
|
224,
|
|
1.0,
|
|
)
|
|
|
|
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
|
input = rgb[
|
|
y:y2,
|
|
x:x2,
|
|
]
|
|
|
|
if input.shape != (224, 224):
|
|
input = cv2.resize(input, (224, 224))
|
|
|
|
input = np.expand_dims(input, axis=0)
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
|
self.interpreter.invoke()
|
|
res: np.ndarray = self.interpreter.get_tensor(
|
|
self.tensor_output_details[0]["index"]
|
|
)[0]
|
|
probs = res / res.sum(axis=0)
|
|
best_id = np.argmax(probs)
|
|
|
|
if best_id == 964:
|
|
logger.debug("No bird classification was detected.")
|
|
return
|
|
|
|
score = round(probs[best_id], 2)
|
|
|
|
if score < self.config.classification.bird.threshold:
|
|
logger.debug(f"Score {score} is not above required threshold")
|
|
return
|
|
|
|
previous_score = self.detected_birds.get(obj_data["id"], 0.0)
|
|
|
|
if score <= previous_score:
|
|
logger.debug(f"Score {score} is worse than previous score {previous_score}")
|
|
return
|
|
|
|
self.sub_label_publisher.publish(
|
|
EventMetadataTypeEnum.sub_label,
|
|
(obj_data["id"], self.labelmap[best_id], score),
|
|
)
|
|
self.detected_birds[obj_data["id"]] = score
|
|
|
|
def handle_request(self, topic, request_data):
|
|
return None
|
|
|
|
def expire_object(self, object_id, camera):
|
|
if object_id in self.detected_birds:
|
|
self.detected_birds.pop(object_id)
|