blakeblackshear.frigate/frigate/util.py
2021-06-22 06:33:04 -05:00

582 lines
17 KiB
Python
Executable File

import collections
import datetime
import hashlib
import json
import logging
import math
import signal
import subprocess as sp
import threading
import time
import traceback
from abc import ABC, abstractmethod
from multiprocessing import shared_memory
from typing import AnyStr
import cv2
import matplotlib.pyplot as plt
import numpy as np
logger = logging.getLogger(__name__)
def draw_timestamp(
frame,
timestamp,
timestamp_format,
font_effect=None,
font_scale=1.0,
font_thickness=2,
font_color=(255, 255, 255),
position="ul",
):
time_to_show = datetime.datetime.fromtimestamp(
timestamp
).strftime(timestamp_format)
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale = font_scale,
thickness = font_thickness
)
image_width = frame.shape[1]
image_height = frame.shape[0]
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
if position == "ul":
text_offset_x = 0
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "ur":
text_offset_x = image_width - text_width
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "bl":
text_offset_x = 0
text_offset_y = image_height - (line_height + 8)
elif position == "br":
text_offset_x = image_width - text_width
text_offset_y = image_height - (line_height + 8)
if font_effect == "solid":
# make the coords of the box with a small padding of two pixels
timestamp_box_coords = np.array([
[text_offset_x, text_offset_y],
[text_offset_x+text_width, text_offset_y],
[text_offset_x+text_width, text_offset_y + line_height+ 8],
[text_offset_x, text_offset_y + line_height+ 8],
])
cv2.fillPoly(
frame,
[timestamp_box_coords],
# inverse color of text for background for max. contrast
(255-font_color[0], 255-font_color[1], 255-font_color[2]),
)
elif font_effect == "shadow":
cv2.putText(
frame,
time_to_show,
(text_offset_x + 3, text_offset_y + line_height),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale = font_scale,
color = (255-font_color[0], 255-font_color[1], 255-font_color[2]),
thickness = font_thickness,
)
cv2.putText(
frame,
time_to_show,
(text_offset_x, text_offset_y + line_height - 3),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale = font_scale,
color = font_color,
thickness = font_thickness,
)
def draw_box_with_label(
frame,
x_min,
y_min,
x_max,
y_max,
label,
info,
thickness=2,
color=None,
position="ul",
):
if color is None:
color = (0, 0, 255)
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == "ul":
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "ur":
text_offset_x = x_max - (text_width + 8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "bl":
text_offset_x = x_min
text_offset_y = y_max
elif position == "br":
text_offset_x = x_max - (text_width + 8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = (
(text_offset_x, text_offset_y),
(text_offset_x + text_width + 2, text_offset_y + line_height),
)
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(
frame,
display_text,
(text_offset_x, text_offset_y + line_height - 3),
font,
fontScale=font_scale,
color=(0, 0, 0),
thickness=2,
)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is the longest edge and divisible by 4
size = int(max(xmax - xmin, ymax - ymin) // 4 * 4 * multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax - xmin) / 2.0 + xmin - size / 2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1] - size):
x_offset = max(0, (frame_shape[1] - size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax - ymin) / 2.0 + ymin - size / 2.0)
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0] - size):
y_offset = max(0, (frame_shape[0] - size))
return (x_offset, y_offset, x_offset + size, y_offset + size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0] // 3 * 2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width // 2 # width of the uv channels
uv_height = frame_height // 4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0] // 2 # x offset of the uv channels
uv_y_offset = crop[1] // 4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0]) // 2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1]) // 4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (crop[0], crop[1], crop[0] + uv_crop_width * 2, crop[1] + uv_crop_height * 4)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
)
return y, u1, u2, v1, v2
def yuv_crop_and_resize(frame, region, height=None):
# Crops and resizes a YUV frame while maintaining aspect ratio
# https://stackoverflow.com/a/57022634
height = frame.shape[0] // 3 * 2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset // 2
uv_channel_y_offset = y_channel_y_offset // 4
# create the yuv region frame
# make sure the size is a multiple of 4
# TODO: this should be based on the size after resize now
size = (region[3] - region[1]) // 4 * 4
yuv_cropped_frame = np.zeros((size + size // 2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size, 0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset : y_channel_y_offset + y[3] - y[1],
y_channel_x_offset : y_channel_x_offset + y[2] - y[0],
] = frame[y[1] : y[3], y[0] : y[2]]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[u1[1] : u1[3], u1[0] : u1[2]]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
size // 2
+ uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[u2[1] : u2[3], u2[0] : u2[2]]
# copy v1
yuv_cropped_frame[
size
+ size // 4
+ uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[v1[1] : v1[3], v1[0] : v1[2]]
# copy v2
yuv_cropped_frame[
size
+ size // 4
+ uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
size // 2
+ uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[v2[1] : v2[3], v2[0] : v2[2]]
return yuv_cropped_frame
def copy_yuv_to_position(
destination_frame,
destination_offset,
destination_shape,
source_frame=None,
source_channel_dim=None,
):
# get the coordinates of the channels for this position in the layout
y, u1, u2, v1, v2 = get_yuv_crop(
destination_frame.shape,
(
destination_offset[1],
destination_offset[0],
destination_offset[1] + destination_shape[1],
destination_offset[0] + destination_shape[0],
),
)
if source_frame is None:
# clear y
destination_frame[
y[1] : y[3],
y[0] : y[2],
] = 16
# clear u1
destination_frame[u1[1] : u1[3], u1[0] : u1[2]] = 128
# clear u2
destination_frame[u2[1] : u2[3], u2[0] : u2[2]] = 128
# clear v1
destination_frame[v1[1] : v1[3], v1[0] : v1[2]] = 128
# clear v2
destination_frame[v2[1] : v2[3], v2[0] : v2[2]] = 128
else:
interpolation = cv2.INTER_LINEAR
# resize/copy y channel
destination_frame[y[1] : y[3], y[0] : y[2]] = cv2.resize(
source_frame[
source_channel_dim["y"][1] : source_channel_dim["y"][3],
source_channel_dim["y"][0] : source_channel_dim["y"][2],
],
dsize=(y[2] - y[0], y[3] - y[1]),
interpolation=interpolation,
)
# resize/copy u1
destination_frame[u1[1] : u1[3], u1[0] : u1[2]] = cv2.resize(
source_frame[
source_channel_dim["u1"][1] : source_channel_dim["u1"][3],
source_channel_dim["u1"][0] : source_channel_dim["u1"][2],
],
dsize=(u1[2] - u1[0], u1[3] - u1[1]),
interpolation=interpolation,
)
# resize/copy u2
destination_frame[u2[1] : u2[3], u2[0] : u2[2]] = cv2.resize(
source_frame[
source_channel_dim["u2"][1] : source_channel_dim["u2"][3],
source_channel_dim["u2"][0] : source_channel_dim["u2"][2],
],
dsize=(u2[2] - u2[0], u2[3] - u2[1]),
interpolation=interpolation,
)
# resize/copy v1
destination_frame[v1[1] : v1[3], v1[0] : v1[2]] = cv2.resize(
source_frame[
source_channel_dim["v1"][1] : source_channel_dim["v1"][3],
source_channel_dim["v1"][0] : source_channel_dim["v1"][2],
],
dsize=(v1[2] - v1[0], v1[3] - v1[1]),
interpolation=interpolation,
)
# resize/copy v2
destination_frame[v2[1] : v2[3], v2[0] : v2[2]] = cv2.resize(
source_frame[
source_channel_dim["v2"][1] : source_channel_dim["v2"][3],
source_channel_dim["v2"][0] : source_channel_dim["v2"][2],
],
dsize=(v2[2] - v2[0], v2[3] - v2[1]),
interpolation=interpolation,
)
def yuv_region_2_rgb(frame, region):
try:
# TODO: does this copy the numpy array?
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3]),
)
def area(box):
return (box[2] - box[0] + 1) * (box[3] - box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(
0, intersect[3] - intersect[1] + 1
)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[4]
if (
(region[0] > 5 and box[0] - region[0] <= 5)
or (region[1] > 5 and box[1] - region[1] <= 5)
or (frame_shape[1] - region[2] > 5 and region[2] - box[2] <= 5)
or (frame_shape[0] - region[3] > 5 and region[3] - box[3] <= 5)
):
return True
else:
return False
class EventsPerSecond:
def __init__(self, max_events=1000):
self._start = None
self._max_events = max_events
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
def update(self):
if self._start is None:
self.start()
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events + 100:
self._timestamps = self._timestamps[(1 - self._max_events) :]
def eps(self, last_n_seconds=10):
if self._start is None:
self.start()
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now - self._start, last_n_seconds)
return (
len([t for t in self._timestamps if t > (now - last_n_seconds)]) / seconds
)
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
add_mask(m, mask_img)
elif isinstance(mask, str):
add_mask(mask, mask_img)
return mask_img
def add_mask(mask, mask_img):
points = mask.split(",")
contour = np.array(
[[int(points[i]), int(points[i + 1])] for i in range(0, len(points), 2)]
)
cv2.fillPoly(mask_img, pts=[contour], color=(0))
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
pass
@abstractmethod
def get(self, name, timeout_ms=0):
pass
@abstractmethod
def close(self, name):
pass
@abstractmethod
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm
return shm.buf
def get(self, name, shape):
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = shared_memory.SharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
def close(self, name):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]