mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-29 00:06:19 +01:00
c0bd3b362c
* Subclass Process for audio_process * Introduce custom mp.Process subclass In preparation to switch the multiprocessing startup method away from "fork", we cannot rely on os.fork cloning the log state at fork time. Instead, we have to set up logging before we run the business logic of each process. * Make camera_metrics into a class * Make ptz_metrics into a class * Fixed PtzMotionEstimator.ptz_metrics type annotation * Removed pointless variables * Do not start audio processor when no audio cameras are configured
366 lines
12 KiB
Python
366 lines
12 KiB
Python
"""Handle creating audio events."""
|
|
|
|
import datetime
|
|
import logging
|
|
import signal
|
|
import sys
|
|
import threading
|
|
import time
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
import frigate.util as util
|
|
from frigate.camera import CameraMetrics
|
|
from frigate.comms.config_updater import ConfigSubscriber
|
|
from frigate.comms.detections_updater import DetectionPublisher, DetectionTypeEnum
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.config import CameraConfig, CameraInput, FfmpegConfig
|
|
from frigate.const import (
|
|
AUDIO_DURATION,
|
|
AUDIO_FORMAT,
|
|
AUDIO_MAX_BIT_RANGE,
|
|
AUDIO_MIN_CONFIDENCE,
|
|
AUDIO_SAMPLE_RATE,
|
|
FRIGATE_LOCALHOST,
|
|
)
|
|
from frigate.ffmpeg_presets import parse_preset_input
|
|
from frigate.log import LogPipe
|
|
from frigate.object_detection import load_labels
|
|
from frigate.util.builtin import get_ffmpeg_arg_list
|
|
from frigate.video import start_or_restart_ffmpeg, stop_ffmpeg
|
|
|
|
try:
|
|
from tflite_runtime.interpreter import Interpreter
|
|
except ModuleNotFoundError:
|
|
from tensorflow.lite.python.interpreter import Interpreter
|
|
|
|
|
|
def get_ffmpeg_command(ffmpeg: FfmpegConfig) -> list[str]:
|
|
ffmpeg_input: CameraInput = [i for i in ffmpeg.inputs if "audio" in i.roles][0]
|
|
input_args = get_ffmpeg_arg_list(ffmpeg.global_args) + (
|
|
parse_preset_input(ffmpeg_input.input_args, 1)
|
|
or get_ffmpeg_arg_list(ffmpeg_input.input_args)
|
|
or parse_preset_input(ffmpeg.input_args, 1)
|
|
or get_ffmpeg_arg_list(ffmpeg.input_args)
|
|
)
|
|
return (
|
|
[ffmpeg.ffmpeg_path, "-vn", "-threads", "1"]
|
|
+ input_args
|
|
+ ["-i"]
|
|
+ [ffmpeg_input.path]
|
|
+ [
|
|
"-threads",
|
|
"1",
|
|
"-f",
|
|
f"{AUDIO_FORMAT}",
|
|
"-ar",
|
|
f"{AUDIO_SAMPLE_RATE}",
|
|
"-ac",
|
|
"1",
|
|
"-y",
|
|
"pipe:",
|
|
]
|
|
)
|
|
|
|
|
|
class AudioProcessor(util.Process):
|
|
def __init__(
|
|
self,
|
|
cameras: list[CameraConfig],
|
|
camera_metrics: dict[str, CameraMetrics],
|
|
):
|
|
super().__init__(name="frigate.audio_manager", daemon=True)
|
|
|
|
self.logger = logging.getLogger(self.name)
|
|
self.camera_metrics = camera_metrics
|
|
self.cameras = cameras
|
|
|
|
def run(self) -> None:
|
|
stop_event = threading.Event()
|
|
audio_threads: list[AudioEventMaintainer] = []
|
|
|
|
threading.current_thread().name = "process:audio_manager"
|
|
signal.signal(signal.SIGTERM, lambda sig, frame: sys.exit())
|
|
|
|
if len(self.cameras) == 0:
|
|
return
|
|
|
|
try:
|
|
for camera in self.cameras:
|
|
audio_thread = AudioEventMaintainer(
|
|
camera,
|
|
self.camera_metrics,
|
|
stop_event,
|
|
)
|
|
audio_threads.append(audio_thread)
|
|
audio_thread.start()
|
|
|
|
self.logger.info(f"Audio processor started (pid: {self.pid})")
|
|
|
|
while True:
|
|
signal.pause()
|
|
finally:
|
|
stop_event.set()
|
|
for thread in audio_threads:
|
|
thread.join(1)
|
|
if thread.is_alive():
|
|
self.logger.info(f"Waiting for thread {thread.name:s} to exit")
|
|
thread.join(10)
|
|
|
|
for thread in audio_threads:
|
|
if thread.is_alive():
|
|
self.logger.warning(f"Thread {thread.name} is still alive")
|
|
self.logger.info("Exiting audio processor")
|
|
|
|
|
|
class AudioEventMaintainer(threading.Thread):
|
|
def __init__(
|
|
self,
|
|
camera: CameraConfig,
|
|
camera_metrics: dict[str, CameraMetrics],
|
|
stop_event: threading.Event,
|
|
) -> None:
|
|
super().__init__(name=f"{camera.name}_audio_event_processor")
|
|
|
|
self.config = camera
|
|
self.camera_metrics = camera_metrics
|
|
self.detections: dict[dict[str, any]] = {}
|
|
self.stop_event = stop_event
|
|
self.detector = AudioTfl(stop_event, self.config.audio.num_threads)
|
|
self.shape = (int(round(AUDIO_DURATION * AUDIO_SAMPLE_RATE)),)
|
|
self.chunk_size = int(round(AUDIO_DURATION * AUDIO_SAMPLE_RATE * 2))
|
|
self.logger = logging.getLogger(f"audio.{self.config.name}")
|
|
self.ffmpeg_cmd = get_ffmpeg_command(self.config.ffmpeg)
|
|
self.logpipe = LogPipe(f"ffmpeg.{self.config.name}.audio")
|
|
self.audio_listener = None
|
|
|
|
# create communication for audio detections
|
|
self.requestor = InterProcessRequestor()
|
|
self.config_subscriber = ConfigSubscriber(f"config/audio/{camera.name}")
|
|
self.detection_publisher = DetectionPublisher(DetectionTypeEnum.audio)
|
|
|
|
def detect_audio(self, audio) -> None:
|
|
if not self.config.audio.enabled or self.stop_event.is_set():
|
|
return
|
|
|
|
audio_as_float = audio.astype(np.float32)
|
|
rms, dBFS = self.calculate_audio_levels(audio_as_float)
|
|
|
|
self.camera_metrics[self.config.name].audio_rms.value = rms
|
|
self.camera_metrics[self.config.name].audio_dBFS.value = dBFS
|
|
|
|
# only run audio detection when volume is above min_volume
|
|
if rms >= self.config.audio.min_volume:
|
|
# create waveform relative to max range and look for detections
|
|
waveform = (audio / AUDIO_MAX_BIT_RANGE).astype(np.float32)
|
|
model_detections = self.detector.detect(waveform)
|
|
audio_detections = []
|
|
|
|
for label, score, _ in model_detections:
|
|
self.logger.debug(
|
|
f"{self.config.name} heard {label} with a score of {score}"
|
|
)
|
|
|
|
if label not in self.config.audio.listen:
|
|
continue
|
|
|
|
if score > dict((self.config.audio.filters or {}).get(label, {})).get(
|
|
"threshold", 0.8
|
|
):
|
|
self.handle_detection(label, score)
|
|
audio_detections.append(label)
|
|
|
|
# send audio detection data
|
|
self.detection_publisher.publish(
|
|
(
|
|
self.config.name,
|
|
datetime.datetime.now().timestamp(),
|
|
dBFS,
|
|
audio_detections,
|
|
)
|
|
)
|
|
|
|
self.expire_detections()
|
|
|
|
def calculate_audio_levels(self, audio_as_float: np.float32) -> Tuple[float, float]:
|
|
# Calculate RMS (Root-Mean-Square) which represents the average signal amplitude
|
|
# Note: np.float32 isn't serializable, we must use np.float64 to publish the message
|
|
rms = np.sqrt(np.mean(np.absolute(np.square(audio_as_float))))
|
|
|
|
# Transform RMS to dBFS (decibels relative to full scale)
|
|
if rms > 0:
|
|
dBFS = 20 * np.log10(np.abs(rms) / AUDIO_MAX_BIT_RANGE)
|
|
else:
|
|
dBFS = 0
|
|
|
|
self.requestor.send_data(f"{self.config.name}/audio/dBFS", float(dBFS))
|
|
self.requestor.send_data(f"{self.config.name}/audio/rms", float(rms))
|
|
|
|
return float(rms), float(dBFS)
|
|
|
|
def handle_detection(self, label: str, score: float) -> None:
|
|
if self.detections.get(label):
|
|
self.detections[label]["last_detection"] = (
|
|
datetime.datetime.now().timestamp()
|
|
)
|
|
else:
|
|
self.requestor.send_data(f"{self.config.name}/audio/{label}", "ON")
|
|
|
|
resp = requests.post(
|
|
f"{FRIGATE_LOCALHOST}/api/events/{self.config.name}/{label}/create",
|
|
json={"duration": None, "score": score, "source_type": "audio"},
|
|
)
|
|
|
|
if resp.status_code == 200:
|
|
event_id = resp.json()["event_id"]
|
|
self.detections[label] = {
|
|
"id": event_id,
|
|
"label": label,
|
|
"last_detection": datetime.datetime.now().timestamp(),
|
|
}
|
|
|
|
def expire_detections(self) -> None:
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
for detection in self.detections.values():
|
|
if not detection:
|
|
continue
|
|
|
|
if (
|
|
now - detection.get("last_detection", now)
|
|
> self.config.audio.max_not_heard
|
|
):
|
|
self.requestor.send_data(
|
|
f"{self.config.name}/audio/{detection['label']}", "OFF"
|
|
)
|
|
|
|
resp = requests.put(
|
|
f"{FRIGATE_LOCALHOST}/api/events/{detection['id']}/end",
|
|
json={"end_time": detection["last_detection"]},
|
|
)
|
|
|
|
if resp.status_code == 200:
|
|
self.detections[detection["label"]] = None
|
|
else:
|
|
self.logger.warning(
|
|
f"Failed to end audio event {detection['id']} with status code {resp.status_code}"
|
|
)
|
|
|
|
def start_or_restart_ffmpeg(self) -> None:
|
|
self.audio_listener = start_or_restart_ffmpeg(
|
|
self.ffmpeg_cmd,
|
|
self.logger,
|
|
self.logpipe,
|
|
self.chunk_size,
|
|
self.audio_listener,
|
|
)
|
|
|
|
def read_audio(self) -> None:
|
|
def log_and_restart() -> None:
|
|
if self.stop_event.is_set():
|
|
return
|
|
|
|
time.sleep(self.config.ffmpeg.retry_interval)
|
|
self.logpipe.dump()
|
|
self.start_or_restart_ffmpeg()
|
|
|
|
try:
|
|
chunk = self.audio_listener.stdout.read(self.chunk_size)
|
|
|
|
if not chunk:
|
|
if self.audio_listener.poll() is not None:
|
|
self.logger.error("ffmpeg process is not running, restarting...")
|
|
log_and_restart()
|
|
return
|
|
|
|
return
|
|
|
|
audio = np.frombuffer(chunk, dtype=np.int16)
|
|
self.detect_audio(audio)
|
|
except Exception as e:
|
|
self.logger.error(f"Error reading audio data from ffmpeg process: {e}")
|
|
log_and_restart()
|
|
|
|
def run(self) -> None:
|
|
self.start_or_restart_ffmpeg()
|
|
|
|
while not self.stop_event.is_set():
|
|
# check if there is an updated config
|
|
(
|
|
updated_topic,
|
|
updated_audio_config,
|
|
) = self.config_subscriber.check_for_update()
|
|
|
|
if updated_topic:
|
|
self.config.audio = updated_audio_config
|
|
|
|
self.read_audio()
|
|
|
|
stop_ffmpeg(self.audio_listener, self.logger)
|
|
self.logpipe.close()
|
|
self.requestor.stop()
|
|
self.config_subscriber.stop()
|
|
self.detection_publisher.stop()
|
|
|
|
|
|
class AudioTfl:
|
|
def __init__(self, stop_event: threading.Event, num_threads=2):
|
|
self.stop_event = stop_event
|
|
self.num_threads = num_threads
|
|
self.labels = load_labels("/audio-labelmap.txt", prefill=521)
|
|
self.interpreter = Interpreter(
|
|
model_path="/cpu_audio_model.tflite",
|
|
num_threads=self.num_threads,
|
|
)
|
|
|
|
self.interpreter.allocate_tensors()
|
|
|
|
self.tensor_input_details = self.interpreter.get_input_details()
|
|
self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
|
def _detect_raw(self, tensor_input):
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
|
self.interpreter.invoke()
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
res = self.interpreter.get_tensor(self.tensor_output_details[0]["index"])[0]
|
|
non_zero_indices = res > 0
|
|
class_ids = np.argpartition(-res, 20)[:20]
|
|
class_ids = class_ids[np.argsort(-res[class_ids])]
|
|
class_ids = class_ids[non_zero_indices[class_ids]]
|
|
scores = res[class_ids]
|
|
boxes = np.full((scores.shape[0], 4), -1, np.float32)
|
|
count = len(scores)
|
|
|
|
for i in range(count):
|
|
if scores[i] < AUDIO_MIN_CONFIDENCE or i == 20:
|
|
break
|
|
detections[i] = [
|
|
class_ids[i],
|
|
float(scores[i]),
|
|
boxes[i][0],
|
|
boxes[i][1],
|
|
boxes[i][2],
|
|
boxes[i][3],
|
|
]
|
|
|
|
return detections
|
|
|
|
def detect(self, tensor_input, threshold=AUDIO_MIN_CONFIDENCE):
|
|
detections = []
|
|
|
|
if self.stop_event.is_set():
|
|
return detections
|
|
|
|
raw_detections = self._detect_raw(tensor_input)
|
|
|
|
for d in raw_detections:
|
|
if d[1] < threshold:
|
|
break
|
|
detections.append(
|
|
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
|
)
|
|
return detections
|