mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			518 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			518 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Review apis."""
 | 
						|
 | 
						|
import logging
 | 
						|
from datetime import datetime, timedelta
 | 
						|
from functools import reduce
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from flask import Blueprint, jsonify, make_response, request
 | 
						|
from peewee import Case, DoesNotExist, fn, operator
 | 
						|
 | 
						|
from frigate.models import Recordings, ReviewSegment
 | 
						|
from frigate.util.builtin import get_tz_modifiers
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
ReviewBp = Blueprint("reviews", __name__)
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/review")
 | 
						|
def review():
 | 
						|
    cameras = request.args.get("cameras", "all")
 | 
						|
    labels = request.args.get("labels", "all")
 | 
						|
    reviewed = request.args.get("reviewed", type=int, default=0)
 | 
						|
    limit = request.args.get("limit", type=int, default=None)
 | 
						|
    severity = request.args.get("severity", None)
 | 
						|
 | 
						|
    before = request.args.get("before", type=float, default=datetime.now().timestamp())
 | 
						|
    after = request.args.get(
 | 
						|
        "after", type=float, default=(datetime.now() - timedelta(hours=18)).timestamp()
 | 
						|
    )
 | 
						|
 | 
						|
    clauses = [((ReviewSegment.start_time > after) & (ReviewSegment.end_time < before))]
 | 
						|
 | 
						|
    if cameras != "all":
 | 
						|
        camera_list = cameras.split(",")
 | 
						|
        clauses.append((ReviewSegment.camera << camera_list))
 | 
						|
 | 
						|
    if labels != "all":
 | 
						|
        # use matching so segments with multiple labels
 | 
						|
        # still match on a search where any label matches
 | 
						|
        label_clauses = []
 | 
						|
        filtered_labels = labels.split(",")
 | 
						|
 | 
						|
        for label in filtered_labels:
 | 
						|
            label_clauses.append(
 | 
						|
                (ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
 | 
						|
            )
 | 
						|
 | 
						|
        label_clause = reduce(operator.or_, label_clauses)
 | 
						|
        clauses.append((label_clause))
 | 
						|
 | 
						|
    if reviewed == 0:
 | 
						|
        clauses.append((ReviewSegment.has_been_reviewed == False))
 | 
						|
 | 
						|
    if severity:
 | 
						|
        clauses.append((ReviewSegment.severity == severity))
 | 
						|
 | 
						|
    review = (
 | 
						|
        ReviewSegment.select()
 | 
						|
        .where(reduce(operator.and_, clauses))
 | 
						|
        .order_by(ReviewSegment.severity.asc())
 | 
						|
        .order_by(ReviewSegment.start_time.desc())
 | 
						|
        .limit(limit)
 | 
						|
        .dicts()
 | 
						|
        .iterator()
 | 
						|
    )
 | 
						|
 | 
						|
    return jsonify([r for r in review])
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/review/summary")
 | 
						|
def review_summary():
 | 
						|
    tz_name = request.args.get("timezone", default="utc", type=str)
 | 
						|
    hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(tz_name)
 | 
						|
    day_ago = (datetime.now() - timedelta(hours=24)).timestamp()
 | 
						|
    month_ago = (datetime.now() - timedelta(days=30)).timestamp()
 | 
						|
 | 
						|
    cameras = request.args.get("cameras", "all")
 | 
						|
    labels = request.args.get("labels", "all")
 | 
						|
 | 
						|
    clauses = [(ReviewSegment.start_time > day_ago)]
 | 
						|
 | 
						|
    if cameras != "all":
 | 
						|
        camera_list = cameras.split(",")
 | 
						|
        clauses.append((ReviewSegment.camera << camera_list))
 | 
						|
 | 
						|
    if labels != "all":
 | 
						|
        # use matching so segments with multiple labels
 | 
						|
        # still match on a search where any label matches
 | 
						|
        label_clauses = []
 | 
						|
        filtered_labels = labels.split(",")
 | 
						|
 | 
						|
        for label in filtered_labels:
 | 
						|
            label_clauses.append(
 | 
						|
                (ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
 | 
						|
            )
 | 
						|
 | 
						|
        label_clause = reduce(operator.or_, label_clauses)
 | 
						|
        clauses.append((label_clause))
 | 
						|
 | 
						|
    last_24 = (
 | 
						|
        ReviewSegment.select(
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "alert"),
 | 
						|
                            ReviewSegment.has_been_reviewed,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("reviewed_alert"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "detection"),
 | 
						|
                            ReviewSegment.has_been_reviewed,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("reviewed_detection"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "significant_motion"),
 | 
						|
                            ReviewSegment.has_been_reviewed,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("reviewed_motion"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "alert"),
 | 
						|
                            1,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("total_alert"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "detection"),
 | 
						|
                            1,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("total_detection"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "significant_motion"),
 | 
						|
                            1,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("total_motion"),
 | 
						|
        )
 | 
						|
        .where(reduce(operator.and_, clauses))
 | 
						|
        .dicts()
 | 
						|
        .get()
 | 
						|
    )
 | 
						|
 | 
						|
    clauses = [(ReviewSegment.start_time > month_ago)]
 | 
						|
 | 
						|
    if cameras != "all":
 | 
						|
        camera_list = cameras.split(",")
 | 
						|
        clauses.append((ReviewSegment.camera << camera_list))
 | 
						|
 | 
						|
    if labels != "all":
 | 
						|
        # use matching so segments with multiple labels
 | 
						|
        # still match on a search where any label matches
 | 
						|
        label_clauses = []
 | 
						|
        filtered_labels = labels.split(",")
 | 
						|
 | 
						|
        for label in filtered_labels:
 | 
						|
            label_clauses.append(
 | 
						|
                (ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
 | 
						|
            )
 | 
						|
 | 
						|
        label_clause = reduce(operator.or_, label_clauses)
 | 
						|
        clauses.append((label_clause))
 | 
						|
 | 
						|
    last_month = (
 | 
						|
        ReviewSegment.select(
 | 
						|
            fn.strftime(
 | 
						|
                "%Y-%m-%d",
 | 
						|
                fn.datetime(
 | 
						|
                    ReviewSegment.start_time,
 | 
						|
                    "unixepoch",
 | 
						|
                    hour_modifier,
 | 
						|
                    minute_modifier,
 | 
						|
                ),
 | 
						|
            ).alias("day"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "alert"),
 | 
						|
                            ReviewSegment.has_been_reviewed,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("reviewed_alert"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "detection"),
 | 
						|
                            ReviewSegment.has_been_reviewed,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("reviewed_detection"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "significant_motion"),
 | 
						|
                            ReviewSegment.has_been_reviewed,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("reviewed_motion"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "alert"),
 | 
						|
                            1,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("total_alert"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "detection"),
 | 
						|
                            1,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("total_detection"),
 | 
						|
            fn.SUM(
 | 
						|
                Case(
 | 
						|
                    None,
 | 
						|
                    [
 | 
						|
                        (
 | 
						|
                            (ReviewSegment.severity == "significant_motion"),
 | 
						|
                            1,
 | 
						|
                        )
 | 
						|
                    ],
 | 
						|
                    0,
 | 
						|
                )
 | 
						|
            ).alias("total_motion"),
 | 
						|
        )
 | 
						|
        .where(reduce(operator.and_, clauses))
 | 
						|
        .group_by(
 | 
						|
            (ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
 | 
						|
        )
 | 
						|
        .order_by(ReviewSegment.start_time.desc())
 | 
						|
    )
 | 
						|
 | 
						|
    data = {
 | 
						|
        "last24Hours": last_24,
 | 
						|
    }
 | 
						|
 | 
						|
    for e in last_month.dicts().iterator():
 | 
						|
        data[e["day"]] = e
 | 
						|
 | 
						|
    return jsonify(data)
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/reviews/viewed", methods=("POST",))
 | 
						|
def set_multiple_reviewed():
 | 
						|
    json: dict[str, any] = request.get_json(silent=True) or {}
 | 
						|
    list_of_ids = json.get("ids", "")
 | 
						|
 | 
						|
    if not list_of_ids or len(list_of_ids) == 0:
 | 
						|
        return make_response(
 | 
						|
            jsonify({"success": False, "message": "Not a valid list of ids"}), 404
 | 
						|
        )
 | 
						|
 | 
						|
    ReviewSegment.update(has_been_reviewed=True).where(
 | 
						|
        ReviewSegment.id << list_of_ids
 | 
						|
    ).execute()
 | 
						|
 | 
						|
    return make_response(
 | 
						|
        jsonify({"success": True, "message": "Reviewed multiple items"}), 200
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/review/<id>/viewed", methods=("DELETE",))
 | 
						|
def set_not_reviewed(id):
 | 
						|
    try:
 | 
						|
        review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == id)
 | 
						|
    except DoesNotExist:
 | 
						|
        return make_response(
 | 
						|
            jsonify({"success": False, "message": "Review " + id + " not found"}), 404
 | 
						|
        )
 | 
						|
 | 
						|
    review.has_been_reviewed = False
 | 
						|
    review.save()
 | 
						|
 | 
						|
    return make_response(
 | 
						|
        jsonify({"success": True, "message": "Reviewed " + id + " not viewed"}), 200
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/reviews/delete", methods=("POST",))
 | 
						|
def delete_reviews():
 | 
						|
    json: dict[str, any] = request.get_json(silent=True) or {}
 | 
						|
    list_of_ids = json.get("ids", "")
 | 
						|
 | 
						|
    if not list_of_ids or len(list_of_ids) == 0:
 | 
						|
        return make_response(
 | 
						|
            jsonify({"success": False, "message": "Not a valid list of ids"}), 404
 | 
						|
        )
 | 
						|
 | 
						|
    reviews = (
 | 
						|
        ReviewSegment.select(
 | 
						|
            ReviewSegment.camera,
 | 
						|
            ReviewSegment.start_time,
 | 
						|
            ReviewSegment.end_time,
 | 
						|
        )
 | 
						|
        .where(ReviewSegment.id << list_of_ids)
 | 
						|
        .dicts()
 | 
						|
        .iterator()
 | 
						|
    )
 | 
						|
    recording_ids = []
 | 
						|
 | 
						|
    for review in reviews:
 | 
						|
        start_time = review["start_time"]
 | 
						|
        end_time = review["end_time"]
 | 
						|
        camera_name = review["camera"]
 | 
						|
        recordings = (
 | 
						|
            Recordings.select(Recordings.id, Recordings.path)
 | 
						|
            .where(
 | 
						|
                Recordings.start_time.between(start_time, end_time)
 | 
						|
                | Recordings.end_time.between(start_time, end_time)
 | 
						|
                | (
 | 
						|
                    (start_time > Recordings.start_time)
 | 
						|
                    & (end_time < Recordings.end_time)
 | 
						|
                )
 | 
						|
            )
 | 
						|
            .where(Recordings.camera == camera_name)
 | 
						|
            .dicts()
 | 
						|
            .iterator()
 | 
						|
        )
 | 
						|
 | 
						|
        for recording in recordings:
 | 
						|
            Path(recording["path"]).unlink(missing_ok=True)
 | 
						|
            recording_ids.append(recording["id"])
 | 
						|
 | 
						|
    # delete recordings and review segments
 | 
						|
    Recordings.delete().where(Recordings.id << recording_ids).execute()
 | 
						|
    ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
 | 
						|
 | 
						|
    return make_response(jsonify({"success": True, "message": "Delete reviews"}), 200)
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/review/activity/motion")
 | 
						|
def motion_activity():
 | 
						|
    """Get motion and audio activity."""
 | 
						|
    cameras = request.args.get("cameras", "all")
 | 
						|
    before = request.args.get("before", type=float, default=datetime.now().timestamp())
 | 
						|
    after = request.args.get(
 | 
						|
        "after", type=float, default=(datetime.now() - timedelta(hours=1)).timestamp()
 | 
						|
    )
 | 
						|
 | 
						|
    clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
 | 
						|
    clauses.append((Recordings.motion > 0))
 | 
						|
 | 
						|
    if cameras != "all":
 | 
						|
        camera_list = cameras.split(",")
 | 
						|
        clauses.append((Recordings.camera << camera_list))
 | 
						|
 | 
						|
    data: list[Recordings] = (
 | 
						|
        Recordings.select(
 | 
						|
            Recordings.camera,
 | 
						|
            Recordings.start_time,
 | 
						|
            Recordings.motion,
 | 
						|
        )
 | 
						|
        .where(reduce(operator.and_, clauses))
 | 
						|
        .order_by(Recordings.start_time.asc())
 | 
						|
        .dicts()
 | 
						|
        .iterator()
 | 
						|
    )
 | 
						|
 | 
						|
    # get scale in seconds
 | 
						|
    scale = request.args.get("scale", type=int, default=30)
 | 
						|
 | 
						|
    # resample data using pandas to get activity on scaled basis
 | 
						|
    df = pd.DataFrame(data, columns=["start_time", "motion", "camera"])
 | 
						|
 | 
						|
    # set date as datetime index
 | 
						|
    df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
 | 
						|
    df.set_index(["start_time"], inplace=True)
 | 
						|
 | 
						|
    # normalize data
 | 
						|
    motion = (
 | 
						|
        df["motion"]
 | 
						|
        .resample(f"{scale}S")
 | 
						|
        .apply(lambda x: max(x, key=abs, default=0.0))
 | 
						|
        .fillna(0.0)
 | 
						|
        .to_frame()
 | 
						|
    )
 | 
						|
    cameras = df["camera"].resample(f"{scale}S").agg(lambda x: ",".join(set(x)))
 | 
						|
    df = motion.join(cameras)
 | 
						|
 | 
						|
    length = df.shape[0]
 | 
						|
    chunk = int(60 * (60 / scale))
 | 
						|
 | 
						|
    for i in range(0, length, chunk):
 | 
						|
        part = df.iloc[i : i + chunk]
 | 
						|
        df.iloc[i : i + chunk, 0] = (
 | 
						|
            (part["motion"] - part["motion"].min())
 | 
						|
            / (part["motion"].max() - part["motion"].min())
 | 
						|
            * 100
 | 
						|
        ).fillna(0.0)
 | 
						|
 | 
						|
    # change types for output
 | 
						|
    df.index = df.index.astype(int) // (10**9)
 | 
						|
    normalized = df.reset_index().to_dict("records")
 | 
						|
    return jsonify(normalized)
 | 
						|
 | 
						|
 | 
						|
@ReviewBp.route("/review/activity/audio")
 | 
						|
def audio_activity():
 | 
						|
    """Get motion and audio activity."""
 | 
						|
    cameras = request.args.get("cameras", "all")
 | 
						|
    before = request.args.get("before", type=float, default=datetime.now().timestamp())
 | 
						|
    after = request.args.get(
 | 
						|
        "after", type=float, default=(datetime.now() - timedelta(hours=1)).timestamp()
 | 
						|
    )
 | 
						|
 | 
						|
    clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
 | 
						|
 | 
						|
    if cameras != "all":
 | 
						|
        camera_list = cameras.split(",")
 | 
						|
        clauses.append((Recordings.camera << camera_list))
 | 
						|
 | 
						|
    all_recordings: list[Recordings] = (
 | 
						|
        Recordings.select(
 | 
						|
            Recordings.start_time,
 | 
						|
            Recordings.duration,
 | 
						|
            Recordings.objects,
 | 
						|
            Recordings.dBFS,
 | 
						|
        )
 | 
						|
        .where(reduce(operator.and_, clauses))
 | 
						|
        .order_by(Recordings.start_time.asc())
 | 
						|
        .iterator()
 | 
						|
    )
 | 
						|
 | 
						|
    # format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
 | 
						|
    # periods where active objects / audio was detected will cause audio to be scaled down
 | 
						|
    data: list[dict[str, float]] = []
 | 
						|
 | 
						|
    for rec in all_recordings:
 | 
						|
        data.append(
 | 
						|
            {
 | 
						|
                "start_time": rec.start_time,
 | 
						|
                "audio": rec.dBFS if rec.objects == 0 else 0,
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
    # get scale in seconds
 | 
						|
    scale = request.args.get("scale", type=int, default=30)
 | 
						|
 | 
						|
    # resample data using pandas to get activity on scaled basis
 | 
						|
    df = pd.DataFrame(data, columns=["start_time", "audio"])
 | 
						|
 | 
						|
    # set date as datetime index
 | 
						|
    df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
 | 
						|
    df.set_index(["start_time"], inplace=True)
 | 
						|
 | 
						|
    # normalize data
 | 
						|
    df = df.resample(f"{scale}S").mean().fillna(0.0)
 | 
						|
    df["audio"] = (
 | 
						|
        (df["audio"] - df["audio"].max())
 | 
						|
        / (df["audio"].min() - df["audio"].max())
 | 
						|
        * -100
 | 
						|
    )
 | 
						|
 | 
						|
    # change types for output
 | 
						|
    df.index = df.index.astype(int) // (10**9)
 | 
						|
    normalized = df.reset_index().to_dict("records")
 | 
						|
    return jsonify(normalized)
 |