mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Remove yolov8 support from Frigate * Remove yolov8 from dev * Remove builds * Formatting and remove yolov5 * Fix lint * remove models download --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from pydantic import Field
 | 
						|
from typing_extensions import Literal
 | 
						|
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig
 | 
						|
 | 
						|
try:
 | 
						|
    from tflite_runtime.interpreter import Interpreter, load_delegate
 | 
						|
except ModuleNotFoundError:
 | 
						|
    from tensorflow.lite.python.interpreter import Interpreter, load_delegate
 | 
						|
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "edgetpu"
 | 
						|
 | 
						|
 | 
						|
class EdgeTpuDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
    device: str = Field(default=None, title="Device Type")
 | 
						|
 | 
						|
 | 
						|
class EdgeTpuTfl(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
 | 
						|
    def __init__(self, detector_config: EdgeTpuDetectorConfig):
 | 
						|
        device_config = {}
 | 
						|
        if detector_config.device is not None:
 | 
						|
            device_config = {"device": detector_config.device}
 | 
						|
 | 
						|
        edge_tpu_delegate = None
 | 
						|
 | 
						|
        try:
 | 
						|
            device_type = (
 | 
						|
                device_config["device"] if "device" in device_config else "auto"
 | 
						|
            )
 | 
						|
            logger.info(f"Attempting to load TPU as {device_type}")
 | 
						|
            edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
 | 
						|
            logger.info("TPU found")
 | 
						|
            self.interpreter = Interpreter(
 | 
						|
                model_path=detector_config.model.path,
 | 
						|
                experimental_delegates=[edge_tpu_delegate],
 | 
						|
            )
 | 
						|
        except ValueError:
 | 
						|
            logger.error(
 | 
						|
                "No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
 | 
						|
            )
 | 
						|
            raise
 | 
						|
 | 
						|
        self.interpreter.allocate_tensors()
 | 
						|
 | 
						|
        self.tensor_input_details = self.interpreter.get_input_details()
 | 
						|
        self.tensor_output_details = self.interpreter.get_output_details()
 | 
						|
        self.model_type = detector_config.model.model_type
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
 | 
						|
        self.interpreter.invoke()
 | 
						|
 | 
						|
        boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
 | 
						|
        class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
 | 
						|
        scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
 | 
						|
        count = int(
 | 
						|
            self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
 | 
						|
        )
 | 
						|
 | 
						|
        detections = np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
        for i in range(count):
 | 
						|
            if scores[i] < 0.4 or i == 20:
 | 
						|
                break
 | 
						|
            detections[i] = [
 | 
						|
                class_ids[i],
 | 
						|
                float(scores[i]),
 | 
						|
                boxes[i][0],
 | 
						|
                boxes[i][1],
 | 
						|
                boxes[i][2],
 | 
						|
                boxes[i][3],
 | 
						|
            ]
 | 
						|
 | 
						|
        return detections
 |