mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Remove yolov8 support from Frigate * Remove yolov8 from dev * Remove builds * Formatting and remove yolov5 * Fix lint * remove models download --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
		
			
				
	
	
		
			48 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			48 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from typing_extensions import Literal
 | 
						|
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig
 | 
						|
from frigate.detectors.util import preprocess
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "onnx"
 | 
						|
 | 
						|
 | 
						|
class ONNXDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
 | 
						|
 | 
						|
class ONNXDetector(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
 | 
						|
    def __init__(self, detector_config: ONNXDetectorConfig):
 | 
						|
        try:
 | 
						|
            import onnxruntime
 | 
						|
 | 
						|
            logger.info("ONNX: loaded onnxruntime module")
 | 
						|
        except ModuleNotFoundError:
 | 
						|
            logger.error(
 | 
						|
                "ONNX: module loading failed, need 'pip install onnxruntime'?!?"
 | 
						|
            )
 | 
						|
            raise
 | 
						|
 | 
						|
        path = detector_config.model.path
 | 
						|
        logger.info(f"ONNX: loading {detector_config.model.path}")
 | 
						|
        self.model = onnxruntime.InferenceSession(path)
 | 
						|
        logger.info(f"ONNX: {path} loaded")
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        model_input_name = self.model.get_inputs()[0].name
 | 
						|
        model_input_shape = self.model.get_inputs()[0].shape
 | 
						|
        tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
 | 
						|
        # ruff: noqa: F841
 | 
						|
        tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
 | 
						|
 | 
						|
        raise Exception(
 | 
						|
            "No models are currently supported via onnx. See the docs for more info."
 | 
						|
        )
 |