mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Remove yolov8 support from Frigate * Remove yolov8 from dev * Remove builds * Formatting and remove yolov5 * Fix lint * remove models download --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
		
			
				
	
	
		
			134 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import openvino.runtime as ov
 | 
						|
from pydantic import Field
 | 
						|
from typing_extensions import Literal
 | 
						|
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "openvino"
 | 
						|
 | 
						|
 | 
						|
class OvDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
    device: str = Field(default=None, title="Device Type")
 | 
						|
 | 
						|
 | 
						|
class OvDetector(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
 | 
						|
    def __init__(self, detector_config: OvDetectorConfig):
 | 
						|
        self.ov_core = ov.Core()
 | 
						|
        self.ov_model = self.ov_core.read_model(detector_config.model.path)
 | 
						|
        self.ov_model_type = detector_config.model.model_type
 | 
						|
 | 
						|
        self.h = detector_config.model.height
 | 
						|
        self.w = detector_config.model.width
 | 
						|
 | 
						|
        self.interpreter = self.ov_core.compile_model(
 | 
						|
            model=self.ov_model, device_name=detector_config.device
 | 
						|
        )
 | 
						|
 | 
						|
        logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
 | 
						|
        self.output_indexes = 0
 | 
						|
 | 
						|
        while True:
 | 
						|
            try:
 | 
						|
                tensor_shape = self.interpreter.output(self.output_indexes).shape
 | 
						|
                logger.info(f"Model Output-{self.output_indexes} Shape: {tensor_shape}")
 | 
						|
                self.output_indexes += 1
 | 
						|
            except Exception:
 | 
						|
                logger.info(f"Model has {self.output_indexes} Output Tensors")
 | 
						|
                break
 | 
						|
        if self.ov_model_type == ModelTypeEnum.yolox:
 | 
						|
            self.num_classes = tensor_shape[2] - 5
 | 
						|
            logger.info(f"YOLOX model has {self.num_classes} classes")
 | 
						|
            self.set_strides_grids()
 | 
						|
 | 
						|
    def set_strides_grids(self):
 | 
						|
        grids = []
 | 
						|
        expanded_strides = []
 | 
						|
 | 
						|
        strides = [8, 16, 32]
 | 
						|
 | 
						|
        hsizes = [self.h // stride for stride in strides]
 | 
						|
        wsizes = [self.w // stride for stride in strides]
 | 
						|
 | 
						|
        for hsize, wsize, stride in zip(hsizes, wsizes, strides):
 | 
						|
            xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
 | 
						|
            grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
 | 
						|
            grids.append(grid)
 | 
						|
            shape = grid.shape[:2]
 | 
						|
            expanded_strides.append(np.full((*shape, 1), stride))
 | 
						|
        self.grids = np.concatenate(grids, 1)
 | 
						|
        self.expanded_strides = np.concatenate(expanded_strides, 1)
 | 
						|
 | 
						|
    ## Takes in class ID, confidence score, and array of [x, y, w, h] that describes detection position,
 | 
						|
    ## returns an array that's easily passable back to Frigate.
 | 
						|
    def process_yolo(self, class_id, conf, pos):
 | 
						|
        return [
 | 
						|
            class_id,  # class ID
 | 
						|
            conf,  # confidence score
 | 
						|
            (pos[1] - (pos[3] / 2)) / self.h,  # y_min
 | 
						|
            (pos[0] - (pos[2] / 2)) / self.w,  # x_min
 | 
						|
            (pos[1] + (pos[3] / 2)) / self.h,  # y_max
 | 
						|
            (pos[0] + (pos[2] / 2)) / self.w,  # x_max
 | 
						|
        ]
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input):
 | 
						|
        infer_request = self.interpreter.create_infer_request()
 | 
						|
        infer_request.infer([tensor_input])
 | 
						|
 | 
						|
        if self.ov_model_type == ModelTypeEnum.ssd:
 | 
						|
            results = infer_request.get_output_tensor()
 | 
						|
 | 
						|
            detections = np.zeros((20, 6), np.float32)
 | 
						|
            i = 0
 | 
						|
            for object_detected in results.data[0, 0, :]:
 | 
						|
                if object_detected[0] != -1:
 | 
						|
                    logger.debug(object_detected)
 | 
						|
                if object_detected[2] < 0.1 or i == 20:
 | 
						|
                    break
 | 
						|
                detections[i] = [
 | 
						|
                    object_detected[1],  # Label ID
 | 
						|
                    float(object_detected[2]),  # Confidence
 | 
						|
                    object_detected[4],  # y_min
 | 
						|
                    object_detected[3],  # x_min
 | 
						|
                    object_detected[6],  # y_max
 | 
						|
                    object_detected[5],  # x_max
 | 
						|
                ]
 | 
						|
                i += 1
 | 
						|
            return detections
 | 
						|
        elif self.ov_model_type == ModelTypeEnum.yolox:
 | 
						|
            out_tensor = infer_request.get_output_tensor()
 | 
						|
            # [x, y, h, w, box_score, class_no_1, ..., class_no_80],
 | 
						|
            results = out_tensor.data
 | 
						|
            results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides
 | 
						|
            results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
 | 
						|
            image_pred = results[0, ...]
 | 
						|
 | 
						|
            class_conf = np.max(
 | 
						|
                image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True
 | 
						|
            )
 | 
						|
            class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1)
 | 
						|
            class_pred = np.expand_dims(class_pred, axis=1)
 | 
						|
 | 
						|
            conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
 | 
						|
            # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
 | 
						|
            dets = np.concatenate((image_pred[:, :5], class_conf, class_pred), axis=1)
 | 
						|
            dets = dets[conf_mask]
 | 
						|
 | 
						|
            ordered = dets[dets[:, 5].argsort()[::-1]][:20]
 | 
						|
 | 
						|
            detections = np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
            for i, object_detected in enumerate(ordered):
 | 
						|
                detections[i] = self.process_yolo(
 | 
						|
                    object_detected[6], object_detected[5], object_detected[:4]
 | 
						|
                )
 | 
						|
            return detections
 |