knx/src/cc1310_platform.cpp

561 lines
11 KiB
C++
Raw Normal View History

Add support for CC1310 platform based on SimpleLink SDK (#94) * Initial commit * Clean up * Remove display code * Change cmake build * Add SimpleLink SDK for CC13xx/CC26xx as submodule * Remove commented line from build.sh * Working build * Remove SDK submodule * Squashed 'examples/knx-cc1310/coresdk_cc13xx_cc26xx/' content from commit 0d78d32 git-subtree-dir: examples/knx-cc1310/coresdk_cc13xx_cc26xx git-subtree-split: 0d78d3280357416a5c0388148cda13717c9ffaa5 * Add more comments and enable Power_idleFunc() for NoRTOS variant. Internal SDK driver functions which have to wait for something will cause Power_idleFunc to be called instead of doing busy wait. * Move CC1310 platform init around * Optimize a bit more in debug build config as the binary does not fit into 128Kb flash otherwise. * Explicitly list each source/header file in build config. Use linker group to resolve circular dependencies. * Ignore vscode settings.json * Increase stacks size * Only compile CC1310 source code if #define DeviceFamily_CC13X0 * initial commit of CC1310 RF driver with first working RX version * Better handling of buttonUp() across platforms * Start cleanup * continue cleanup * Fix bau2920 compilation * Continue cleanup * Fix compilation in other examples * Fix compilation * htons() and ntohs() only for SAMD and STM32, but not for Linux and ESP8266 and ESP32 * htons(9 and ntohs() needed for CC13x0 * Continue cleanup * Add CC1310 platform to CI * Fix CI * Use more recent toolchain from ARM * Fix travis * Use Ubuntu Focal * Fix toolchain for travis * Fix package name * Fix toolchain * Add libstdc++-dev package * Add newlib packages * Remove commented commands from CI * Fix travis * Fix compilation of knxPython * Clean up linefeeds * Fix RX callback * Move RF CRC16-DNP to bits.cpp * Fix TX * Optimization: do not calc CRC for block1 again in rf_data_link_layer * Make newline optional in printHex * Cleanup. First working version: ETS5 programming of individual address via KNX/RF coupler. * Use LEDs and Buttons to control ProgMode and Flash Erase * Remove settings.json (VScode) * Add README.md * Update README.md * Update README.md * Fix typo
2020-11-10 21:52:38 +01:00
#ifdef DeviceFamily_CC13X0
#include <cstdio>
#include <cstdarg>
#include <cstring>
#include <cmath>
#include <ti/devices/DeviceFamily.h>
#include DeviceFamily_constructPath(driverlib/sys_ctrl.h)
#include <ti/drivers/GPIO.h>
#include "SEGGER_RTT.h"
#include "Board.h"
#include "knx/bits.h"
#include "cc1310_platform.h"
//#define printf(args...) (SEGGER_RTT_printf(0, args))
//#define PRINT_RTT
#define PRINT_UART
Add support for CC1310 platform based on SimpleLink SDK (#94) * Initial commit * Clean up * Remove display code * Change cmake build * Add SimpleLink SDK for CC13xx/CC26xx as submodule * Remove commented line from build.sh * Working build * Remove SDK submodule * Squashed 'examples/knx-cc1310/coresdk_cc13xx_cc26xx/' content from commit 0d78d32 git-subtree-dir: examples/knx-cc1310/coresdk_cc13xx_cc26xx git-subtree-split: 0d78d3280357416a5c0388148cda13717c9ffaa5 * Add more comments and enable Power_idleFunc() for NoRTOS variant. Internal SDK driver functions which have to wait for something will cause Power_idleFunc to be called instead of doing busy wait. * Move CC1310 platform init around * Optimize a bit more in debug build config as the binary does not fit into 128Kb flash otherwise. * Explicitly list each source/header file in build config. Use linker group to resolve circular dependencies. * Ignore vscode settings.json * Increase stacks size * Only compile CC1310 source code if #define DeviceFamily_CC13X0 * initial commit of CC1310 RF driver with first working RX version * Better handling of buttonUp() across platforms * Start cleanup * continue cleanup * Fix bau2920 compilation * Continue cleanup * Fix compilation in other examples * Fix compilation * htons() and ntohs() only for SAMD and STM32, but not for Linux and ESP8266 and ESP32 * htons(9 and ntohs() needed for CC13x0 * Continue cleanup * Add CC1310 platform to CI * Fix CI * Use more recent toolchain from ARM * Fix travis * Use Ubuntu Focal * Fix toolchain for travis * Fix package name * Fix toolchain * Add libstdc++-dev package * Add newlib packages * Remove commented commands from CI * Fix travis * Fix compilation of knxPython * Clean up linefeeds * Fix RX callback * Move RF CRC16-DNP to bits.cpp * Fix TX * Optimization: do not calc CRC for block1 again in rf_data_link_layer * Make newline optional in printHex * Cleanup. First working version: ETS5 programming of individual address via KNX/RF coupler. * Use LEDs and Buttons to control ProgMode and Flash Erase * Remove settings.json (VScode) * Add README.md * Update README.md * Update README.md * Fix typo
2020-11-10 21:52:38 +01:00
static uint8_t serialNumber[6];
// KNX_FLASH_SIZE shall be defined in CMakeLists.txt for example. It is also used in class Memory in memory.cpp
static uint8_t NVS_buffer[KNX_FLASH_SIZE];
static UART_Handle uart;
static NVS_Handle nvsHandle;
static ClockP_Handle clk0Handle;
static ClockP_Struct clk0Struct;
static volatile uint32_t msCounter = 0;
static void clk0Fxn(uintptr_t arg0)
{
msCounter++;
}
static void setupClock()
{
ClockP_Params clkParams;
ClockP_Params_init(&clkParams);
clkParams.period = 1000/ClockP_tickPeriod;
clkParams.startFlag = true;
ClockP_construct(&clk0Struct, (ClockP_Fxn)clk0Fxn, 1000/ClockP_tickPeriod, &clkParams);
clk0Handle = ClockP_handle(&clk0Struct);
}
static void setupGPIO()
{
/* Configure the LED and button pins */
GPIO_setConfig(Board_GPIO_LED0, GPIO_CFG_OUT_STD | GPIO_CFG_OUT_LOW);
GPIO_setConfig(Board_GPIO_LED1, GPIO_CFG_OUT_STD | GPIO_CFG_OUT_LOW);
GPIO_setConfig(Board_GPIO_BUTTON0, GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_FALLING);
GPIO_setConfig(Board_GPIO_BUTTON1, GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_FALLING);
}
static void setupUART()
{
UART_Params uartParams;
UART_Params_init(&uartParams);
uartParams.writeDataMode = UART_DATA_BINARY;
uartParams.readDataMode = UART_DATA_BINARY;
uartParams.readReturnMode = UART_RETURN_FULL;
uartParams.readEcho = UART_ECHO_OFF;
uartParams.baudRate = 115200;
uart = UART_open(Board_UART0, &uartParams);
if (uart == NULL)
{
while(true)
{}
}
}
static void setupNVS()
{
NVS_Params nvsParams;
NVS_Params_init(&nvsParams);
nvsHandle = NVS_open(Board_NVSINTERNAL, &nvsParams);
if (nvsHandle == NULL)
{
println("NVS_open() failed.");
return;
}
NVS_Attrs attrs;
NVS_getAttrs(nvsHandle, &attrs);
print("NVS flash size: "); println((int)attrs.regionSize);
print("NVS flash sector size: "); println((int)attrs.sectorSize);
if (GPIO_read(Board_GPIO_BUTTON1) == 0)
{
println("Button1 is pressed. Erasing flash...");
int_fast16_t result = NVS_erase(nvsHandle, 0, attrs.regionSize);
if (result != NVS_STATUS_SUCCESS)
{
print("Error erasing NVS, result: "); println(result);
}
else
{
println("NVS successfully erased.");
}
}
}
void sleep(uint32_t sec)
{
ClockP_sleep(sec);
}
void usleep(uint32_t usec)
{
ClockP_usleep(usec);
}
uint32_t millis()
{
// we use our own ms clock because the Os tick counter has counts 10us ticks and following calculation would not wrap correctly at 32bit boundary
//return Clock_getTicks() * (uint64_t) Clock_tickPeriod / 1000; // rtos
//return ClockP_getTicks( * (uint64_t) Clock_tickPeriod / 1000); //nortos
return msCounter;
}
void delay(uint32_t ms)
{
ClockP_usleep(ms * 1000);
//sleep(ms * (1000 / ClockP_tickPeriod)); //rtos
//sleepTicks(millis * 1000ULL / ClockP_tickPeriod); //nortos
}
void delayMicroseconds (unsigned int howLong)
{
ClockP_usleep(howLong);
}
size_t write(uint8_t c)
{
#if defined(PRINT_UART)
uint8_t buffer[1] = {c};
return UART_write(uart, buffer, sizeof(buffer));
#elif defined (PRINT_RTT)
return SEGGER_RTT_PutChar(0, (char)c);
#else
return 1;
#endif
}
#if 0
size_t write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
while (size--)
{
if (write(*buffer++))
{
n++;
}
else
{
break;
}
}
return n;
}
#else
size_t write(const uint8_t *buffer, size_t size)
{
#if defined(PRINT_UART)
return UART_write(uart, buffer, size);
#elif defined (PRINT_RTT)
return SEGGER_RTT_Write(0, buffer, size);
#else
return size;
#endif
}
#endif
size_t write(const char *buffer, size_t size)
{
return write((const uint8_t *)buffer, size);
}
void print(const char* s)
{
if (s == NULL)
{
return;
}
write(s, strlen(s));
}
void print(char c)
{
write(c);
}
void printUint64(uint64_t value, int base = DEC)
{
char buf[8 * sizeof(uint64_t) + 1];
char* str = &buf[sizeof(buf) - 1];
*str = '\0';
uint64_t n = value;
do {
char c = n % base;
n /= base;
*--str = c < 10 ? c + '0' : c + 'A' - 10;
} while (n > 0);
print(str);
}
void print(long long num, int base)
{
if (base == 0)
{
write(num);
return;
}
else if (base == 10)
{
if (num < 0)
{
print('-');
num = -num;
printUint64(num, 10);
return;
}
printUint64(num, 10);
return;
}
else
{
printUint64(num, base);
return;
}
}
void print(unsigned long long num, int base)
{
if (base == 0)
{
write(num);
return;
}
else
{
printUint64(num, base);
return;
}
}
void print(unsigned char num, int base)
{
print((unsigned long long)num, base);
}
void print(int num, int base)
{
print((long long)num, base);
}
void print(unsigned int num, int base)
{
print((unsigned long long)num, base);
}
void print(long num, int base)
{
print((long long)num, base);
}
void print(unsigned long num, int base)
{
print((unsigned long long)num, base);
}
void printFloat(double number, uint8_t digits)
{
if (std::isnan(number))
{
print("nan");
return;
}
if (std::isinf(number))
{
print("inf");
return;
}
if (number > 4294967040.0)
{
print("ovf"); // constant determined empirically
return;
}
if (number <-4294967040.0)
{
print("ovf"); // constant determined empirically
return;
}
// Handle negative numbers
if (number < 0.0)
{
print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
printUint64(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits > 0)
{
print('.');
}
// Extract digits from the remainder one at a time
while (digits-- > 0)
{
remainder *= 10.0;
unsigned int toPrint = (unsigned int)(remainder);
printUint64(toPrint);
remainder -= toPrint;
}
}
void print(double num, int digits = 2)
{
printFloat(num, digits);
}
void println(void)
{
print("\r\n");
}
void println(const char* s)
{
print(s);
println();
}
void println(char c)
{
print(c);
println();
}
void println(unsigned char num, int base)
{
print(num, base);
println();
}
void println(int num, int base)
{
print(num, base);
println();
}
void println(unsigned int num, int base)
{
print(num, base);
println();
}
void println(long num, int base)
{
print(num, base);
println();
}
void println(unsigned long num, int base)
{
print(num, base);
println();
}
void println(unsigned long long num, int base)
{
printUint64(num, base);
println();
}
void println(double num, int digits = 2)
{
print(num, digits);
println();
}
void println(double num)
{
// default: print 10 digits
println(num, 10);
}
uint32_t digitalRead(uint32_t dwPin)
{
print("ignoring digitalRead: pin: ");print(dwPin);
println(", returning 0");
return 0;
}
void digitalWrite(unsigned long pin, unsigned long value)
{
if (pin == Board_GPIO_LED0)
{
if (value > 0)
{
GPIO_write(Board_GPIO_LED0, Board_GPIO_LED_ON);
}
else
{
GPIO_write(Board_GPIO_LED0, Board_GPIO_LED_OFF);
}
}
else
{
print("dummy digitalWrite: pin: ");print(pin);
print(", value: ");println(value, HEX);
}
}
void pinMode(unsigned long pin, unsigned long mode)
{
print("ignoring pinMode: pin: ");print(pin);
print(", mode: ");println(mode, HEX);
}
typedef void (*IsrFuncPtr)();
static IsrFuncPtr gpioCallback;
static void gpioButtonFxn0(uint_least8_t index)
{
gpioCallback();
}
void attachInterrupt(uint32_t pin, IsrFuncPtr callback, uint32_t mode)
{
if (pin == Board_GPIO_BUTTON0)
{
gpioCallback = callback;
/* install Button callback */
GPIO_setCallback(Board_GPIO_BUTTON0, gpioButtonFxn0);
/* Enable interrupts */
GPIO_enableInt(Board_GPIO_BUTTON0);
}
else
{
print("dummy attachInterrupt: pin: ");print(pin);
print(", mode: ");println(mode, HEX);
}
}
CC1310Platform::CC1310Platform()
{
// build serialNumber from IEEE MAC Address (MAC is 8 bytes, serialNumber 6 bytes only)
*(uint32_t*)(serialNumber+2) = HWREG(FCFG1_BASE+FCFG1_O_MAC_15_4_0) ^ HWREG(FCFG1_BASE+FCFG1_O_MAC_15_4_1); // make a 6 byte hash from 8 bytes
}
CC1310Platform::~CC1310Platform()
{
}
void CC1310Platform::init()
{
// TI Drivers init
// According to SDK docs it is safe to call them AFTER NoRTOS_Start()
// If RTOS is used and multiple thread use the same driver, then the init shall be performed before BIOS_Start()
GPIO_init();
UART_init();
NVS_init();
// Init GPIO
setupGPIO();
// Init UART
setupUART();
// tick Period on this controller 10us so we use our own millisecond clock
setupClock();
// Init flash
setupNVS();
}
uint8_t* CC1310Platform::getEepromBuffer(uint16_t size)
{
if(size > KNX_FLASH_SIZE)
{
fatalError();
}
NVS_read(nvsHandle, 0, (void *) NVS_buffer, size);
for (int i=0; i<size; i++)
{
if (NVS_buffer[i] != 0)
{
return NVS_buffer;
}
}
memset(NVS_buffer, 0xff, size);
return NVS_buffer;
}
void CC1310Platform::commitToEeprom()
{
println("CC1310Platform::commitToEeprom() ...");
int_fast16_t result = NVS_write(nvsHandle, 0, (void *)NVS_buffer, KNX_FLASH_SIZE, NVS_WRITE_ERASE | NVS_WRITE_POST_VERIFY);
if (result != NVS_STATUS_SUCCESS)
{
print("Error writing to NVS, result: "); println(result);
}
else
{
println("NVS successfully written");
}
delay(500);
}
void CC1310Platform::restart()
{
println("System restart in 500ms.");
delay(500);
SysCtrlSystemReset();
// Should neber be reached!
fatalError();
}
void CC1310Platform::fatalError()
{
println("A fatal error occured. Stopped.");
while(true)
{
/* Turn on user LED */
GPIO_write(Board_GPIO_LED0, Board_GPIO_LED_OFF);
GPIO_write(Board_GPIO_LED1, Board_GPIO_LED_ON);
delay(500);
GPIO_write(Board_GPIO_LED0, Board_GPIO_LED_ON);
GPIO_write(Board_GPIO_LED1, Board_GPIO_LED_OFF);
delay(500);
}
}
#endif // DeviceFamily_CC13X0