knx/examples/knx-pzem004/pzem-004t-v30.ino

364 lines
9.6 KiB
Arduino
Raw Normal View History

#include <knx.h>
#include <PZEM004Tv30.h>
#include "wiring_private.h" // pinPeripheral() function
#include <TimeLib.h>
//Sercom Stuff
#define PIN_SERIAL2_RX (34ul) // Pin description number for PIO_SERCOM on D12 (34ul)
#define PIN_SERIAL2_TX (36ul) // Pin description number for PIO_SERCOM on D10 (36ul)
#define PAD_SERIAL2_TX (UART_TX_PAD_2) // SERCOM pad 2
#define PAD_SERIAL2_RX (SERCOM_RX_PAD_3) // SERCOM pad 3
Uart Serial2(&sercom1, PIN_SERIAL2_RX, PIN_SERIAL2_TX, PAD_SERIAL2_RX, PAD_SERIAL2_TX); //TX D10, RX D12
void SERCOM1_Handler()
{
Serial2.IrqHandler();
}
//PZEM stuff
#define PZEM004_NO_SWSERIAL
#define PZEM_DEFAULT_ADDR 0xF8
//knx stuff
#define goReset knx.getGroupObject(1)
#define goDateTime knx.getGroupObject(2)
#define goProgMode knx.getGroupObject(9)
// Global Const
const uint16_t ets_timePeriod[7] = {0, 1, 5, 15, 1 * 60, 5 * 60, 15 * 60};
const uint8_t ets_startupTimeout[7] = {0, 1, 2, 3, 4, 5, 6};
const uint8_t ets_percentCycle[6] = {0, 5, 10, 15, 20, 30}; //need knxprod update... ?
const uint8_t ledPin = LED_BUILTIN;// the number of the LED pin
const uint8_t physicalCount = 6; // voltage,current,power_factor,power,energy,frequency
// Global Variable
uint8_t percentCycle = 0; // better to define a global or read knx.paramByte each time... ?
uint32_t timePeriod = 0; // same here,
uint8_t resetPeriod = 0; //same here ...
//uint8_t resetEnergy = 0; // and here... disabled/day/week/month
bool progMode = true;
// Issue on https://github.com/mandulaj/PZEM-004T-v30/issues/43
PZEM004Tv30 pzem(Serial2, PZEM_DEFAULT_ADDR);
struct Physical {
void init(uint8_t GOaddr, Dpt type_dpt){
_GOaddr = GOaddr;
_dpt = type_dpt;
}
void loop(){
// unsigned long currentMillis = millis();
// Delta Change update as defined in ETS
float deltaPercent = ( 100 * ( _value - _lastValue ) / _value );
if ( percentCycle != 0 && abs(deltaPercent) >= percentCycle )
{
_trigger = true;
}
// Refresh groupAddress value as defined in ETS since last update
if ( timePeriod != 0 && millis() - _lastMillis >= timePeriod )
{
_trigger = true;
}
// UpdateGO but send to bus only if triggered by time or value change percentage
if (_trigger){
knx.getGroupObject(_GOaddr).value(_value, _dpt);
_lastValue = _value;
_lastMillis = millis();
_trigger = false;
}else{
knx.getGroupObject(_GOaddr).valueNoSend(_value, _dpt);
}
}
void setValue(float value){
if (value != _value)
{
_value = value;
}
}
private:
Dpt _dpt;
float _value = 0;
float _lastValue = 0;
uint32_t _lastMillis = 0;
uint8_t _GOaddr;
bool _trigger = false;
// bool isUpdated = false;
public:
} Physical[physicalCount];
class Blinker
{
private:
uint8_t ledPin_; // the number of the LED pin
uint32_t OnTime = 1000; // milliseconds of on-time
uint32_t OffTime = 1000; // milliseconds of off-time
bool ledState = LOW; // ledState used to set the LED
uint32_t previousMillis; // will store last time LED was updated
void setOutput(bool state_, uint32_t currentMillis_){
ledState = state_;
previousMillis = currentMillis_;
digitalWrite(ledPin_, state_);
}
public:
Blinker(uint8_t pin)
{
ledPin_ = pin;
pinMode(ledPin_, OUTPUT);
previousMillis = 0;
}
void set(uint32_t on, uint32_t off){
OnTime = on;
OffTime = off;
}
void loop(){
uint32_t currentMillis = millis();
if((ledState == HIGH) && (currentMillis - previousMillis >= OnTime))
{
setOutput(LOW, currentMillis);
}
else if ((ledState == LOW) && (currentMillis - previousMillis >= OffTime))
{
setOutput(HIGH, currentMillis);
}
}
};
Blinker led = Blinker(ledPin);
void callBackProgMode(GroupObject& go){
progMode = (bool)go.value();
}
void callBackDateTime(GroupObject& go){
static uint32_t lastUpdate = 0;
const uint32_t interval = (1000 * 60 * 60 * 24); // 1day
struct tm myTime;
myTime = go.value();
unsigned short tmp_sec = myTime.tm_sec;
unsigned short tmp_min = myTime.tm_min;
unsigned short tmp_hour = myTime.tm_hour;
unsigned short tmp_mday = myTime.tm_mday;
unsigned short tmp_month = myTime.tm_mon;
unsigned short tmp_year = myTime.tm_year;
if (millis() - lastUpdate >= interval && !timeStatus() == timeSet)
{
setTime(tmp_hour, tmp_min, tmp_sec, tmp_mday, tmp_month, tmp_year);
lastUpdate = millis();
}
}
void resetCallback(GroupObject& go)
{
if (go.value())
{
pzem.resetEnergy();
goReset.value(false);
}
}
void setup() {
pinPeripheral(PIN_SERIAL2_RX, PIO_SERCOM);
pinPeripheral(PIN_SERIAL2_TX, PIO_SERCOM);
// SerialUSB.begin(9600);
Serial2.begin(9600);
ArduinoPlatform::SerialDebug = &SerialUSB;
randomSeed(millis());
knx.readMemory();
// led.set(5000, 5000);
if (knx.configured())
{
int confStartupTime = ets_startupTimeout[knx.paramByte(0)] * 1000;
delay(confStartupTime); // the only delay used, why make a withoutDelay function for that?
percentCycle = ets_percentCycle[knx.paramByte(1)];
timePeriod = ets_timePeriod[knx.paramByte(2)] * 1000;
resetPeriod = knx.paramByte(3);
goReset.callback(resetCallback);
goReset.dataPointType(DPT_Trigger);
goDateTime.dataPointType(DPT_DateTime);
goProgMode.dataPointType(DPT_Trigger);
goProgMode.callback(callBackProgMode);
uint8_t GOaddr = 3;
Physical[0].init(GOaddr, DPT_Value_Electric_Potential); // voltage
Physical[1].init(GOaddr += 1, DPT_Value_Electric_Current);
Physical[2].init(GOaddr += 1, DPT_Value_Power_Factor);
Physical[3].init(GOaddr += 1, DPT_Value_Power);
Physical[4].init(GOaddr += 1, DPT_Value_Energy);
Physical[5].init(GOaddr += 1, DPT_Value_Frequency);
led.set(2000, 1000);
}
// is the led active on HIGH or low? Default is LOW
knx.ledPinActiveOn(HIGH);
// pin or GPIO programming button is connected to. Default is 0
knx.ledPin(5);
knx.buttonPin(9);
knx.start();
// while (!SerialUSB) { //wait for DEBUGING
// ; // wait for serial port to connect. Needed for native USB port only
// }
}
void loop() {
knx.loop();
if (knx.configured() && !progMode)
{
refreshValueLoop();
for (uint8_t i=0; i< physicalCount; i++)
{
Physical[i].loop();
}
if (timeStatus() == timeSet && resetPeriod != 0)
{
resetEnergyLoop();
}
}
else if (progMode)
{
prodModeLoop();
}
}
void refreshValueLoop(){
static const uint16_t pzemInterval = 500; // interval at which to blink (milliseconds)
static uint32_t lastPzemUpdate = 0;
if (millis() - lastPzemUpdate >= pzemInterval)
{
for (uint8_t i=0; i < physicalCount; i++)
{
float isaValue;
switch (i) { //maybe a pointer or reference could be nicer...
case 0:
isaValue = pzem.voltage();
break;
case 1:
isaValue = pzem.current();
break;
case 2:
isaValue = pzem.pf();
break;
case 3:
isaValue = pzem.power();
break;
case 4:
isaValue = pzem.energy();
break;
case 5:
isaValue = pzem.frequency();
break;
default:
break;
}
if(!isnan(isaValue))
{
Physical[i].setValue(isaValue);
}
else
{
Physical[i].setValue(-1);
}
}
lastPzemUpdate = millis();
led.set(500, 1000);
}
}
void resetEnergyLoop(){
static time_t lastTime;
time_t samdTime = now();
if (timeStatus() == timeSet)
{
switch (resetPeriod)
{
case 1: //day
if (day(samdTime) != day(lastTime))
{
lastTime = samdTime;
pzem.resetEnergy();
}
break;
case 2: //week
if (weekday(samdTime) != weekday(lastTime) && weekday(samdTime) == 2) //monday
{
lastTime = samdTime;
pzem.resetEnergy();
}
break;
case 3: // month
if (month(samdTime) != month(lastTime))
{
lastTime = samdTime;
pzem.resetEnergy();
}
break;
case 4: // year
if (year(samdTime) != year(lastTime))
{
lastTime = samdTime;
pzem.resetEnergy();
}
default:
break;
}
}
}
void prodModeLoop(){ // run Only if progMode triggered ( at start or callback)
static uint32_t timerProgPrevMillis = 0;
const uint32_t timerProgMode = ( 15 * 60 * 1000 ) ; // 15min
if (!knx.progMode())
{
knx.progMode(true);
timerProgPrevMillis = millis();
led.set(50, 100);
}
else
{
if (millis() - timerProgPrevMillis > timerProgMode) {
knx.progMode(false);
goProgMode.value(false);
progMode = false;
}
}
}