save work

This commit is contained in:
Nanosonde 2020-06-11 11:09:34 +02:00
parent 66b31a6dd7
commit 4c24836ebc
7 changed files with 271 additions and 160 deletions

View File

@ -124,8 +124,9 @@ void ApplicationLayer::dataBroadcastIndication(HopCountType hopType, Priority pr
#else
print("Broadcast-indication: unhandled APDU-Type: ");
println(apdu.type());
break;
#endif
break;
}
}
@ -171,8 +172,9 @@ void ApplicationLayer::dataBroadcastConfirm(AckType ack, HopCountType hopType, P
#else
print("Broadcast-confirm: unhandled APDU-Type: ");
println(apdu.type());
break;
#endif
break;
}
}

View File

@ -13,7 +13,12 @@ enum NmReadSerialNumberType
BauSystemB::BauSystemB(Platform& platform): _memory(platform, _deviceObj), _addrTable(_memory),
_assocTable(_memory), _groupObjTable(_memory), _appProgram(_memory),
_platform(platform), _appLayer(_assocTable, *this),
_platform(platform),
#ifdef USE_DATASECURE
_appLayer(_deviceObj, _secIfObj, _assocTable, *this),
#else
_appLayer(_assocTable, *this),
#endif
_transLayer(_appLayer, _addrTable), _netLayer(_transLayer)
{
_appLayer.transportLayer(_transLayer);

View File

@ -140,7 +140,12 @@ bool DataLinkLayer::sendTelegram(NPDU & npdu, AckType ack, uint16_t destinationA
frame.addressType(addrType);
frame.priority(priority);
frame.repetition(RepititionAllowed);
#if (MEDIUM_TYPE == 5)||(MEDIUM_TYPE == 0)
// Make sure to always send as normal Broadcast on closed media (TP and IP)
frame.systemBroadcast(Broadcast);
#else
frame.systemBroadcast(systemBroadcast);
#endif
if (npdu.octetCount() <= 15)
frame.frameType(StandardFrame);

View File

@ -2,6 +2,8 @@
#include "transport_layer.h"
#include "cemi_frame.h"
#include "association_table_object.h"
#include "security_interface_object.h"
#include "device_object.h"
#include "apdu.h"
#include "bau.h"
#include "string.h"
@ -10,17 +12,22 @@
#include <stdio.h>
const uint8_t SecureDataPdu = 0;
const uint8_t SecureServiceRequest = 2;
const uint8_t SecureServiceResponse = 3;
const uint8_t SecureSyncRequest = 2;
const uint8_t SecureSyncResponse = 3;
uint8_t lastValidSequenceNumberTool = 0;
uint64_t sequenceNumberToolAccess = 0;
uint64_t sequenceNumber = 0;
// Our FDSK
uint8_t SecureApplicationLayer::_key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
uint64_t lastValidSequenceNumberTool = 0;
uint64_t lastValidSequenceNumber = 0;
SecureApplicationLayer::SecureApplicationLayer(AssociationTableObject& assocTable, BusAccessUnit& bau):
ApplicationLayer(assocTable, bau)
SecureApplicationLayer::SecureApplicationLayer(DeviceObject &deviceObj, SecurityInterfaceObject &secIfObj, AssociationTableObject& assocTable, BusAccessUnit& bau):
ApplicationLayer(assocTable, bau),
_secIfObj(secIfObj),
_deviceObj(deviceObj)
{
}
/* from transport layer */
@ -150,6 +157,8 @@ void SecureApplicationLayer::dataConnectedIndication(Priority priority, uint16_t
println("Secure APDU: ");
apdu.printPDU();
// Somehow ugly that we need to know the size in advance here at this point
// Same length calculation is also in the decrypt() function
uint16_t plainApduLength = apdu.length() - 1 - 6 - 4; // secureAdsuLength - sizeof(scf) - sizeof(seqNum) - sizeof(mac)
CemiFrame plainFrame(plainApduLength);
@ -158,9 +167,17 @@ void SecureApplicationLayer::dataConnectedIndication(Priority priority, uint16_t
uint8_t tpci = apdu.frame().data()[TPDU_LPDU_DIFF]; // FIXME: when cEMI class is refactored, there might be additional info fields in cEMI [fixed TPDU_LPDU_DIFF]
print("Secure Debug: TPCI: ");
println(tpci, HEX);
// Note:
// The TPCI is also included in the MAC calculation to provide authenticity for this field.
// However, a secure APDU (with a MAC) is only included in transport layer PDUs T_DATA_GROUP, T_DATA_TAG_GROUP, T_DATA_INDIVIDUAL, T_DATA_CONNECTED
// and not in T_CONNECT, T_DISCONNECT, T_ACK, T_NACK.
// This means the DATA/CONTROL flag is always 0(=DATA). The flag "NUMBERED" differentiates between T_DATA_INDIVIDUAL and T_DATA_CONNECTED.
// The seqNumber is only in T_DATA_CONNECTED and 0 in case of T_DATA_GROUP and T_DATA_GROUP (leaving out T_DATA_TAG_GROUP).
// Summary: effectively only the "NUMBERED" flag (bit6) and the SeqNumber (bit5-2) are used from transport layer.
// In T_DATA_* services the bits1-0 of TPCI octet are used as bits9-8 for APCI type which is fixed to 0x03. SecureService APCI is 0x03F1.
// FIXME: when cEMI class is refactored, there might be additional info fields in cEMI (fixed APDU_LPDU_DIFF)
if (decrypt(plainFrame.data()+APDU_LPDU_DIFF, srcAddress, dstAddress, tpci, apdu.data(), apdu.length()))
if (decrypt(plainFrame.data()+APDU_LPDU_DIFF, srcAddress, dstAddress, false, tpci, apdu.data(), apdu.length()))
{
println("Plain APDU: ");
plainFrame.apdu().printPDU();
@ -168,10 +185,6 @@ void SecureApplicationLayer::dataConnectedIndication(Priority priority, uint16_t
// Process decrypted inner APDU
ApplicationLayer::dataConnectedIndication(priority, tsap, plainFrame.apdu());
}
else
{
println("Decryption failed!");
}
}
else
{
@ -212,106 +225,6 @@ void SecureApplicationLayer::dataConnectedRequest(uint16_t tsap, Priority priori
ApplicationLayer::dataConnectedRequest(tsap, priority, apdu);
}
/* encryption/decryption stuff */
class TpTelegram
{
public:
TpTelegram()
{
}
~TpTelegram()
{
if (_data)
delete[] _data;
}
void parseByteArray(uint8_t *buf)
{
_ctrlField = buf[0];
_ctrlFieldExt = buf[1];
_srcAddr = buf[2] << 8 | buf[3];
_dstAddr = buf[4] << 8 | buf[5];
_dataLen = buf[6];
// Copy starting from TPCI octet
_dataLen += 1;
_data = new uint8_t (_dataLen);
memcpy(_data, &buf[7], _dataLen);
}
uint16_t SrcAddr()
{
return _srcAddr;
}
uint16_t DstAddr()
{
return _dstAddr;
}
uint8_t Tpci()
{
uint8_t tpci;
tpci = (_data[0] & 0xFC) >> 2;
return tpci;
}
uint16_t Apci()
{
uint16_t apci;
if (_dataLen > 1)
{
apci = (_data[0] & 0x03) << 8 | _data[1];
}
else
{
apci = (_data[0] & 0x03);
}
return apci;
}
uint8_t* Apdu()
{
return _data;
}
uint16_t ApduLen()
{
return _dataLen;
}
uint8_t* Asdu()
{
return _data + 2;
}
uint16_t AsduLen()
{
return _dataLen - 2;
}
bool isSecureTelegram()
{
return Apci() == SecureService;
}
private:
uint8_t _ctrlField;
uint8_t _ctrlFieldExt;
uint16_t _srcAddr;
uint16_t _dstAddr;
uint8_t _dataLen;
uint8_t* _data;
};
uint32_t SecureApplicationLayer::calcAuthOnlyMac(uint8_t* apdu, uint8_t apduLength, uint8_t* key, uint8_t* iv, uint8_t* ctr0)
{
uint16_t bufLen = 2 + apduLength; // 2 bytes for the length field (uint16_t)
@ -403,6 +316,69 @@ void SecureApplicationLayer::blockCtr0(uint8_t* buffer, uint8_t* seqNum, uint16_
pBuf = pushByte(0x01, pBuf);
}
const uint8_t* SecureApplicationLayer::toolKey(uint16_t devAddr)
{
const uint8_t* toolKey = _secIfObj.propertyData(PID_TOOL_KEY);
return toolKey;
}
const uint8_t* SecureApplicationLayer::p2pKey(uint16_t addressIndex)
{
// TODO
return _secIfObj.propertyData(PID_P2P_KEY_TABLE);
}
const uint8_t* SecureApplicationLayer::groupKey(uint16_t addressIndex)
{
// TODO
return _secIfObj.propertyData(PID_GRP_KEY_TABLE);
}
uint16_t SecureApplicationLayer::groupAddressIndex(uint16_t groupAddr)
{
// TODO
return 0;
}
uint16_t SecureApplicationLayer::indAddressIndex(uint16_t indAddr)
{
// TODO
return 0;
}
const uint8_t* SecureApplicationLayer::securityKey(uint16_t addr, bool isGroupAddress)
{
if (isGroupAddress)
{
uint16_t gaIndex = groupAddressIndex(addr);
if (gaIndex > 0)
return groupKey(gaIndex);
}
else
{
uint16_t iaIndex = indAddressIndex(addr);
if (iaIndex > 0)
return p2pKey(iaIndex);
}
return nullptr;
}
// returns next outgoing sequence number for secure communication
uint64_t SecureApplicationLayer::nextSequenceNumber(bool toolAccess)
{
return toolAccess ? sequenceNumberToolAccess : sequenceNumber;
}
// stores next outgoing sequence number for secure communication
void SecureApplicationLayer::updateSequenceNumber(bool toolAccess, uint64_t seqNum)
{
if (toolAccess)
sequenceNumberToolAccess = seqNum;
else
sequenceNumber = seqNum;
}
uint64_t SecureApplicationLayer::lastValidSequenceNumber(bool toolAcces, uint16_t srcAddr)
{
if (toolAcces)
@ -414,7 +390,50 @@ uint64_t SecureApplicationLayer::lastValidSequenceNumber(bool toolAcces, uint16_
return 0;
}
bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* secureAsdu, uint16_t secureAdsuLength)
void SecureApplicationLayer::updateLastValidSequence(bool toolAccess, uint16_t remoteAddr, uint64_t seqNo)
{
if (toolAccess)
// TODO
//lastValidSequenceToolAccess.put(remoteAddr, seqNo);
lastValidSequenceNumberTool = seqNo;
//else
// TODO
//lastValidSequence.put(remoteAddr, seqNo);
}
void SecureApplicationLayer::sendSyncResponse(uint16_t dstAddr, bool dstAddrIsGroupAddr, bool toolAccess, uint16_t remoteNextSeqNum)
{
uint64_t ourNextSeqNum = nextSequenceNumber(toolAccess);
// asdu = ByteBuffer.allocate(12).put(sixBytes(ourNextSeq)).put(sixBytes(remoteNextSeq));
// response = secure(SecureSyncResponse, address(), dst, asdu.array(), toolAccess, true).get();
_lastSyncRes = millis();
// Send encrypted SyncResponse message using T_DATA_INDIVIDUAL
//dataIndividualRequest(AckType::AckDontCare, NetworkLayerParameter, SystemPriority, dstAddr, apdu);
}
void SecureApplicationLayer::receivedSyncRequest(uint16_t srcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, bool toolAccess, uint8_t* seqNum, long challenge)
{
uint64_t nextRemoteSeqNum = ((uint64_t)seqNum[0] << 40) | ((uint64_t)seqNum[1] << 32) | ((uint64_t)seqNum[2] << 24) |
((uint64_t)seqNum[3] << 16) | ((uint64_t)seqNum[4] << 8) | (uint64_t)seqNum[5];
uint64_t nextSeqNum = 1 + lastValidSequenceNumber(toolAccess, srcAddr);
if (nextRemoteSeqNum > nextSeqNum)
{
updateLastValidSequence(toolAccess, srcAddr, nextRemoteSeqNum - 1);
nextSeqNum = nextRemoteSeqNum;
}
_syncReqBroadcast = (dstAddr == 0x0000) && dstAddrIsGroupAddr;
uint16_t toAddr = _syncReqBroadcast ? dstAddr : srcAddr;
bool toIsGroupAddress = _syncReqBroadcast;
sendSyncResponse(toAddr, toIsGroupAddress, toolAccess, nextSeqNum);
}
bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t tpci, uint8_t* secureAsdu, uint16_t secureAdsuLength)
{
uint8_t extendedFrameFormat = 0;
@ -424,18 +443,27 @@ bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint1
pBuf = popByte(scf, secureAsdu);
bool toolAccess = ((scf & 0x80) == 0x80);
// bool systemBroadcast = ((scf & 0x08) == 0x08); // not used for decryption
bool systemBroadcast = ((scf & 0x08) == 0x08);
uint8_t sai = (scf >> 4) & 0x07; // sai can only be 0x0 (CCM auth only) or 0x1 (CCM with auth+conf), other values are reserved
bool authOnly = ( sai == 0);
uint8_t service = (scf & 0x07); // only 0x0 (S-A_Data-PDU), 0x2 (S-A_Sync_Req-PDU) or 0x3 (S-A_Sync_Rsp-PDU) are valid values
bool syncReq = service == SecureSyncRequest;
bool syncRes = service == SecureSyncResponse;
uint8_t* key = dstAddrIsGroupAddr ? securityKey(dstAddr) : toolAccess ? toolKey(srcAddr == _deviceObj.induvidualAddress() ? dstAddr : srcAddr) : securityKey(srcAddr);
uint8_t seqNum[6];
pBuf = popByteArray(seqNum, 6, pBuf);
uint64_t receivedSeqNumber = ((uint64_t)seqNum[0] << 40) | ((uint64_t)seqNum[1] << 32) | ((uint64_t)seqNum[2] << 24) |
((uint64_t)seqNum[3] << 16) | ((uint64_t)seqNum[4] << 8) | (uint64_t)seqNum[5];
// Provide array for KNX serial number if it is a SyncRequest
// DataService and SyncResponse do not use this variable.
uint8_t knxSerialNumber[6];
if (service == SecureDataPdu)
{
uint64_t receivedSeqNumber = ((uint64_t)seqNum[0] << 40) | ((uint64_t)seqNum[1] << 32) | ((uint64_t)seqNum[2] << 24) |
((uint64_t)seqNum[3] << 16) | ((uint64_t)seqNum[4] << 8) | (uint64_t)seqNum[5];
uint64_t expectedSeqNumber = lastValidSequenceNumber(toolAccess, srcAddr) + 1;
if (receivedSeqNumber < expectedSeqNumber)
@ -448,6 +476,38 @@ bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint1
return false;
}
}
else if(syncReq)
{
pBuf = popByteArray(knxSerialNumber, 6, pBuf);
// ignore sync.reqs not addressed to us
if (!memcmp(knxSerialNumber, _deviceObj.propertyData(PID_SERIAL_NUMBER), 6))
{
uint8_t emptySerialNumber[6] = {0};
if (systemBroadcast || dstAddr != _deviceObj.induvidualAddress() || !memcmp(knxSerialNumber, emptySerialNumber, 6))
return false;
}
// if responded to another request within the last 1 second, ignore
if ((millis() - _lastSyncRes) < 1000)
{
return false;
}
}
else if (syncRes)
{
// TODO
//final var request = pendingSyncRequests.get(src);
//if (request == null)
// return null;
// in a sync.res, seq actually contains our challenge from sync.req xored with a random value
// extract the random value and store it in seq to use it for block0 and ctr0
//final var challengeXorRandom = BitSet.valueOf(seq);
//final var challenge = BitSet.valueOf(sixBytes((long) request[0]));
//challengeXorRandom.xor(challenge);
//seq = challengeXorRandom.toByteArray();
}
uint16_t apduLength = secureAdsuLength - 1 - 6 - 4; // secureAdsuLength - sizeof(scf) - sizeof(seqNum) - sizeof(mac)
pBuf = popByteArray(plainApdu, apduLength, pBuf);
@ -455,7 +515,7 @@ bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint1
// Clear IV buffer
uint8_t iv[16] = {0x00};
// Create first block B0 for AES CBC MAC calculation, used as IV later
block0(iv, seqNum, srcAddr, dstAddr, false, extendedFrameFormat, tpci | (SecureService >> 8), SecureService & 0x00FF, apduLength);
block0(iv, seqNum, srcAddr, dstAddr, dstAddrIsGroupAddr, extendedFrameFormat, tpci | (SecureService >> 8), SecureService & 0x00FF, apduLength);
// Clear block counter0 buffer
uint8_t ctr0[16] = {0x00};
@ -481,6 +541,8 @@ bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint1
return false;
}
memcpy(plainApdu, secureAsdu, apduLength);
}
else
{
@ -507,7 +569,12 @@ bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint1
popByteArray(plainApdu, apduLength, &buffer[4]); // apdu is now decrypted (overwritten)
// Do calculations for Auth+Conf
uint8_t associatedData[1] = {scf};
uint8_t associatedData[syncReq ? 7 : 1];
associatedData[0] = scf;
if (syncReq)
{
memcpy(&associatedData[1], knxSerialNumber, 6);
}
uint32_t calculatedMac = calcConfAuthMac(associatedData, sizeof(associatedData), plainApdu, apduLength, _key, iv);
if (calculatedMac != decryptedMac)
{
@ -518,39 +585,43 @@ bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint1
print(decryptedMac, HEX);
return false;
}
// prevent a sync.req sent by us to trigger sync notification, this happens if we provide our own tool key
// for decryption above
if (syncReq && srcAddr != _deviceObj.induvidualAddress())
return false;
if (syncReq)
{
uint64_t challenge = ((uint64_t)plainApdu[0] << 40) | ((uint64_t)plainApdu[1] << 32) | ((uint64_t)plainApdu[2] << 24) |
((uint64_t)plainApdu[3] << 16) | ((uint64_t)plainApdu[4] << 8) | (uint64_t)plainApdu[5];
receivedSyncRequest(srcAddr, dstAddr, dstAddrIsGroupAddr, toolAccess, seqNum, challenge);
}
else if (syncRes)
{
//receivedSyncResponse(srcAddr, toolAccess, plainApdu);
}
else
{
if (srcAddr == _deviceObj.induvidualAddress())
{
//logger.trace("update next {}seq -> {}", toolAccess ? "tool access " : "", receivedSeq);
updateSequenceNumber(toolAccess, receivedSeqNumber + 1);
}
else
{
//logger.trace("update last valid {}seq of {} -> {}", toolAccess ? "tool access " : "", src, receivedSeq);
updateLastValidSequence(toolAccess, srcAddr, receivedSeqNumber);
}
}
if (syncReq || syncRes)
return false;
}
return true;
}
/*
void SecureApplicationLayer::test_datasecure_decrypt()
{
TpTelegram t;
t.parseByteArray(secureTelegram);
if (t.isSecureTelegram())
{
uint16_t apduLength = t.AsduLen() - 1 - 6 - 4; // secureAdsuLength - sizeof(scf) - sizeof(seqNum) - sizeof(mac)
uint8_t apdu[apduLength];
if (decrypt(apdu, t.SrcAddr(), t.DstAddr(), t.Tpci(), t.Asdu(), t.AsduLen()))
{
std::cout << "Plain APDU: ";
for (uint8_t i = 0; i< apduLength; i++)
{
std::cout << std::hex << static_cast<unsigned int>(apdu[i]) << " ";
}
std::cout << std::endl;
}
}
else
{
std::cout << "Telegram is not secured!" << std::endl;
}
}
*/
void SecureApplicationLayer::encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* apdu, uint16_t apduLength)
void SecureApplicationLayer::encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t tpci, uint8_t* apdu, uint16_t apduLength)
{
uint8_t scf = 0x90;
uint8_t seqNum[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x04};
@ -560,7 +631,7 @@ void SecureApplicationLayer::encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t
// Clear IV buffer
uint8_t iv[16] = {0x00};
// Create first block B0 for AES CBC MAC calculation, used as IV later
block0(iv, seqNum, srcAddr, dstAddr, false, extendedFrameFormat, tpci | (SecureService >> 8), SecureService & 0x00FF, apduLength);
block0(iv, seqNum, srcAddr, dstAddr, dstAddrIsGroupAddr, extendedFrameFormat, tpci | (SecureService >> 8), SecureService & 0x00FF, apduLength);
// Clear block counter0 buffer
uint8_t ctr0[16] = {0x00};

View File

@ -5,6 +5,8 @@
#include "knx_types.h"
#include "apdu.h"
class DeviceObject;
class SecurityInterfaceObject;
class AssociationTableObject;
class BusAccessUnit;
/**
@ -22,7 +24,7 @@ class SecureApplicationLayer : public ApplicationLayer
* @param assocTable The AssociationTable is used to translate between asap (i.e. group objects) and group addresses.
* @param bau methods are called here depending of the content of the APDU
*/
SecureApplicationLayer(AssociationTableObject& assocTable, BusAccessUnit& bau);
SecureApplicationLayer(DeviceObject& deviceObj, SecurityInterfaceObject& secIfObj, AssociationTableObject& assocTable, BusAccessUnit& bau);
// from transport layer
virtual void dataGroupIndication(HopCountType hopType, Priority priority, uint16_t tsap, APDU& apdu) override;
@ -56,12 +58,32 @@ class SecureApplicationLayer : public ApplicationLayer
void block0(uint8_t* buffer, uint8_t* seqNum, uint16_t indSrcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t extFrameFormat, uint8_t tpci, uint8_t apci, uint8_t payloadLength);
void blockCtr0(uint8_t* buffer, uint8_t* seqNum, uint16_t indSrcAddr, uint16_t dstAddr);
const uint8_t *toolKey(uint16_t devAddr);
const uint8_t* securityKey(uint16_t addr, bool isGroupAddress);
uint16_t indAddressIndex(uint16_t indAddr); // returns 1-based index of address in security IA table
uint16_t groupAddressIndex(uint16_t groupAddr); // returns 1-based index of address in group address table
uint16_t groupObjectIndex(uint16_t groupAddrIndex); // returns 1-based index of object in association table
const uint8_t* p2pKey(uint16_t addressIndex); // returns p2p key for IA index
const uint8_t* groupKey(uint16_t addressIndex); // returns group key for group address index
uint8_t groupObjectSecurity(uint16_t groupObjectIndex);
uint64_t nextSequenceNumber(bool toolAccess);
void updateSequenceNumber(bool toolAccess, uint64_t seqNum);
uint64_t lastValidSequenceNumber(bool toolAcces, uint16_t srcAddr);
void updateLastValidSequence(bool toolAccess, uint16_t remoteAddr, uint64_t seqNo);
bool decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* secureAsdu, uint16_t secureAdsuLength);
void encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* apdu, uint16_t apduLength);
void sendSyncResponse(uint16_t dstAddr, bool dstAddrIsGroupAddr, bool toolAccess, uint16_t remoteNextSeqNum);
void receivedSyncRequest(uint16_t srcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, bool toolAccess, uint8_t* seq, long challenge);
// Our FDSK
static uint8_t _key[];
bool decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t tpci, uint8_t* secureAsdu, uint16_t secureAdsuLength);
void encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t tpci, uint8_t* apdu, uint16_t apduLength);
bool _syncReqBroadcast;
uint32_t _lastSyncRes;
SecurityInterfaceObject& _secIfObj;
DeviceObject& _deviceObj;
};

View File

@ -8,6 +8,9 @@
#include "callback_property.h"
#include "function_property.h"
// Our FDSK
uint8_t SecurityInterfaceObject::_fdsk[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
SecurityInterfaceObject::SecurityInterfaceObject()
{
Property* properties[] =
@ -50,7 +53,7 @@ SecurityInterfaceObject::SecurityInterfaceObject()
[](SecurityInterfaceObject* obj, uint8_t* data, uint8_t length, uint8_t* resultData, uint8_t& resultLength) -> void {
// TODO
}),
new DataProperty( PID_TOOL_KEY, true, PDT_GENERIC_16, 1, ReadLv3 | WriteLv0, (uint16_t)0 ), // TODO: value (default is FDSK)
new DataProperty( PID_TOOL_KEY, true, PDT_GENERIC_16, 1, ReadLv3 | WriteLv0, (uint8_t*) _fdsk ), // default is FDSK
new DataProperty( PID_SECURITY_REPORT, true, PDT_BITSET8, 1, ReadLv3 | WriteLv0, (uint16_t)0 ), // TODO: value
new DataProperty( PID_SECURITY_REPORT_CONTROL, true, PDT_BINARY_INFORMATION, 1, ReadLv3 | WriteLv0, (uint16_t)0 ), // TODO: value
new DataProperty( PID_SEQUENCE_NUMBER_SENDING, true, PDT_GENERIC_06, 1, ReadLv3 | WriteLv0, (uint16_t)0 ), // TODO: value

View File

@ -13,5 +13,8 @@ public:
const uint8_t* restore(const uint8_t* buffer) override;
uint16_t saveSize() override;
private:
// Our FDSK
static uint8_t _fdsk[];
};
#endif