mirror of
https://github.com/thelsing/knx.git
synced 2025-03-08 00:16:06 +01:00
save work
This commit is contained in:
parent
281fe4ab02
commit
960c7744f9
@ -4,7 +4,10 @@ set(LIBRARIES_FROM_REFERENCES "")
|
||||
add_executable(knx-linux
|
||||
../../src/knx/address_table_object.cpp
|
||||
../../src/knx/address_table_object.h
|
||||
../../src/knx/apdu.cpp
|
||||
../../src/knx/aes.c
|
||||
../../src/knx/aes.h
|
||||
../../src/knx/aes.hpp
|
||||
../../src/knx/apdu.cpp
|
||||
../../src/knx/apdu.h
|
||||
../../src/knx/application_layer.cpp
|
||||
../../src/knx/application_layer.h
|
||||
|
@ -46,6 +46,130 @@ long lastsend = 0;
|
||||
#define MIN knx.getGroupObject(3)
|
||||
#define RESET knx.getGroupObject(4)
|
||||
|
||||
int ceil(float num) {
|
||||
int inum = (int)num;
|
||||
if (num == (float)inum) {
|
||||
return inum;
|
||||
}
|
||||
return inum + 1;
|
||||
}
|
||||
|
||||
int toBase32(uint8_t* in, long length, uint8_t*& out, bool usePadding)
|
||||
{
|
||||
char base32StandardAlphabet[] = {"ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"};
|
||||
char standardPaddingChar = '=';
|
||||
|
||||
int result = 0;
|
||||
int count = 0;
|
||||
int bufSize = 8;
|
||||
int index = 0;
|
||||
int size = 0; // size of temporary array
|
||||
uint8_t* temp = NULL;
|
||||
|
||||
if (length < 0 || length > 268435456LL)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
size = 8 * ceil(length / 4.0); // Calculating size of temporary array. Not very precise.
|
||||
temp = (uint8_t*)malloc(size); // Allocating temporary array.
|
||||
|
||||
if (length > 0)
|
||||
{
|
||||
int buffer = in[0];
|
||||
int next = 1;
|
||||
int bitsLeft = 8;
|
||||
|
||||
while (count < bufSize && (bitsLeft > 0 || next < length))
|
||||
{
|
||||
if (bitsLeft < 5)
|
||||
{
|
||||
if (next < length)
|
||||
{
|
||||
buffer <<= 8;
|
||||
buffer |= in[next] & 0xFF;
|
||||
next++;
|
||||
bitsLeft += 8;
|
||||
}
|
||||
else
|
||||
{
|
||||
int pad = 5 - bitsLeft;
|
||||
buffer <<= pad;
|
||||
bitsLeft += pad;
|
||||
}
|
||||
}
|
||||
index = 0x1F & (buffer >> (bitsLeft -5));
|
||||
|
||||
bitsLeft -= 5;
|
||||
temp[result] = (uint8_t)base32StandardAlphabet[index];
|
||||
result++;
|
||||
}
|
||||
}
|
||||
|
||||
if (usePadding)
|
||||
{
|
||||
int pads = (result % 8);
|
||||
if (pads > 0)
|
||||
{
|
||||
pads = (8 - pads);
|
||||
for (int i = 0; i < pads; i++)
|
||||
{
|
||||
temp[result] = standardPaddingChar;
|
||||
result++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
out = (uint8_t*)malloc(result);
|
||||
memcpy(out, temp, result);
|
||||
free(temp);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
int fromBase32(uint8_t* in, long length, uint8_t*& out)
|
||||
{
|
||||
int result = 0; // Length of the array of decoded values.
|
||||
int buffer = 0;
|
||||
int bitsLeft = 0;
|
||||
uint8_t* temp = NULL;
|
||||
|
||||
temp = (uint8_t*)malloc(length); // Allocating temporary array.
|
||||
|
||||
for (int i = 0; i < length; i++)
|
||||
{
|
||||
uint8_t ch = in[i];
|
||||
|
||||
// ignoring some characters: ' ', '\t', '\r', '\n', '='
|
||||
if (ch == 0xA0 || ch == 0x09 || ch == 0x0A || ch == 0x0D || ch == 0x3D) continue;
|
||||
|
||||
// recovering mistyped: '0' -> 'O', '1' -> 'L', '8' -> 'B'
|
||||
if (ch == 0x30) { ch = 0x4F; } else if (ch == 0x31) { ch = 0x4C; } else if (ch == 0x38) { ch = 0x42; }
|
||||
|
||||
|
||||
// look up one base32 symbols: from 'A' to 'Z' or from 'a' to 'z' or from '2' to '7'
|
||||
if ((ch >= 0x41 && ch <= 0x5A) || (ch >= 0x61 && ch <= 0x7A)) { ch = ((ch & 0x1F) - 1); }
|
||||
else if (ch >= 0x32 && ch <= 0x37) { ch -= (0x32 - 26); }
|
||||
else { free(temp); return 0; }
|
||||
|
||||
buffer <<= 5;
|
||||
buffer |= ch;
|
||||
bitsLeft += 5;
|
||||
if (bitsLeft >= 8)
|
||||
{
|
||||
temp[result] = (unsigned char)((unsigned int)(buffer >> (bitsLeft - 8)) & 0xFF);
|
||||
result++;
|
||||
bitsLeft -= 8;
|
||||
}
|
||||
}
|
||||
|
||||
out = (uint8_t*)malloc(result);
|
||||
memcpy(out, temp, result);
|
||||
free(temp);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void measureTemp()
|
||||
{
|
||||
long now = millis();
|
||||
@ -119,6 +243,14 @@ int main(int argc, char **argv)
|
||||
{
|
||||
printf("main() start.\n");
|
||||
|
||||
uint8_t inPlain[] { 0x00, 0xFA, 0x01, 0x02, 0x03, 0x04, // KNX Serial
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F}; // Key
|
||||
uint8_t* outEncoded = NULL;
|
||||
|
||||
uint8_t len = toBase32(inPlain, sizeof(inPlain), outEncoded, false);
|
||||
|
||||
printf("FDSK(len: %d): %s\n", len, outEncoded);
|
||||
|
||||
// Prevent swapping of this process
|
||||
struct sched_param sp;
|
||||
memset(&sp, 0, sizeof(sp));
|
||||
|
569
src/knx/aes.c
Normal file
569
src/knx/aes.c
Normal file
@ -0,0 +1,569 @@
|
||||
/*
|
||||
|
||||
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
|
||||
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
|
||||
|
||||
The implementation is verified against the test vectors in:
|
||||
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
|
||||
|
||||
ECB-AES128
|
||||
----------
|
||||
|
||||
plain-text:
|
||||
6bc1bee22e409f96e93d7e117393172a
|
||||
ae2d8a571e03ac9c9eb76fac45af8e51
|
||||
30c81c46a35ce411e5fbc1191a0a52ef
|
||||
f69f2445df4f9b17ad2b417be66c3710
|
||||
|
||||
key:
|
||||
2b7e151628aed2a6abf7158809cf4f3c
|
||||
|
||||
resulting cipher
|
||||
3ad77bb40d7a3660a89ecaf32466ef97
|
||||
f5d3d58503b9699de785895a96fdbaaf
|
||||
43b1cd7f598ece23881b00e3ed030688
|
||||
7b0c785e27e8ad3f8223207104725dd4
|
||||
|
||||
|
||||
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
|
||||
You should pad the end of the string with zeros if this is not the case.
|
||||
For AES192/256 the key size is proportionally larger.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Includes: */
|
||||
/*****************************************************************************/
|
||||
#include <string.h> // CBC mode, for memset
|
||||
#include "aes.h"
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Defines: */
|
||||
/*****************************************************************************/
|
||||
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
|
||||
#define Nb 4
|
||||
|
||||
#if defined(AES256) && (AES256 == 1)
|
||||
#define Nk 8
|
||||
#define Nr 14
|
||||
#elif defined(AES192) && (AES192 == 1)
|
||||
#define Nk 6
|
||||
#define Nr 12
|
||||
#else
|
||||
#define Nk 4 // The number of 32 bit words in a key.
|
||||
#define Nr 10 // The number of rounds in AES Cipher.
|
||||
#endif
|
||||
|
||||
// jcallan@github points out that declaring Multiply as a function
|
||||
// reduces code size considerably with the Keil ARM compiler.
|
||||
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
|
||||
#ifndef MULTIPLY_AS_A_FUNCTION
|
||||
#define MULTIPLY_AS_A_FUNCTION 0
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Private variables: */
|
||||
/*****************************************************************************/
|
||||
// state - array holding the intermediate results during decryption.
|
||||
typedef uint8_t state_t[4][4];
|
||||
|
||||
|
||||
|
||||
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
|
||||
// The numbers below can be computed dynamically trading ROM for RAM -
|
||||
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
|
||||
static const uint8_t sbox[256] = {
|
||||
//0 1 2 3 4 5 6 7 8 9 A B C D E F
|
||||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
||||
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
||||
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
||||
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
||||
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
||||
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
||||
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
||||
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
||||
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
||||
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
||||
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
||||
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
||||
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
||||
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
||||
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
||||
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
|
||||
|
||||
static const uint8_t rsbox[256] = {
|
||||
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
|
||||
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
|
||||
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
|
||||
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
|
||||
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
|
||||
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
|
||||
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
|
||||
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
|
||||
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
|
||||
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
|
||||
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
|
||||
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
|
||||
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
|
||||
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
|
||||
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
|
||||
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
|
||||
|
||||
// The round constant word array, Rcon[i], contains the values given by
|
||||
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
|
||||
static const uint8_t Rcon[11] = {
|
||||
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
|
||||
|
||||
/*
|
||||
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
|
||||
* that you can remove most of the elements in the Rcon array, because they are unused.
|
||||
*
|
||||
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
|
||||
*
|
||||
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
|
||||
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
|
||||
*/
|
||||
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Private functions: */
|
||||
/*****************************************************************************/
|
||||
/*
|
||||
static uint8_t getSBoxValue(uint8_t num)
|
||||
{
|
||||
return sbox[num];
|
||||
}
|
||||
*/
|
||||
#define getSBoxValue(num) (sbox[(num)])
|
||||
/*
|
||||
static uint8_t getSBoxInvert(uint8_t num)
|
||||
{
|
||||
return rsbox[num];
|
||||
}
|
||||
*/
|
||||
#define getSBoxInvert(num) (rsbox[(num)])
|
||||
|
||||
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
|
||||
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
|
||||
{
|
||||
unsigned i, j, k;
|
||||
uint8_t tempa[4]; // Used for the column/row operations
|
||||
|
||||
// The first round key is the key itself.
|
||||
for (i = 0; i < Nk; ++i)
|
||||
{
|
||||
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
|
||||
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
|
||||
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
|
||||
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
|
||||
}
|
||||
|
||||
// All other round keys are found from the previous round keys.
|
||||
for (i = Nk; i < Nb * (Nr + 1); ++i)
|
||||
{
|
||||
{
|
||||
k = (i - 1) * 4;
|
||||
tempa[0]=RoundKey[k + 0];
|
||||
tempa[1]=RoundKey[k + 1];
|
||||
tempa[2]=RoundKey[k + 2];
|
||||
tempa[3]=RoundKey[k + 3];
|
||||
|
||||
}
|
||||
|
||||
if (i % Nk == 0)
|
||||
{
|
||||
// This function shifts the 4 bytes in a word to the left once.
|
||||
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
|
||||
|
||||
// Function RotWord()
|
||||
{
|
||||
const uint8_t u8tmp = tempa[0];
|
||||
tempa[0] = tempa[1];
|
||||
tempa[1] = tempa[2];
|
||||
tempa[2] = tempa[3];
|
||||
tempa[3] = u8tmp;
|
||||
}
|
||||
|
||||
// SubWord() is a function that takes a four-byte input word and
|
||||
// applies the S-box to each of the four bytes to produce an output word.
|
||||
|
||||
// Function Subword()
|
||||
{
|
||||
tempa[0] = getSBoxValue(tempa[0]);
|
||||
tempa[1] = getSBoxValue(tempa[1]);
|
||||
tempa[2] = getSBoxValue(tempa[2]);
|
||||
tempa[3] = getSBoxValue(tempa[3]);
|
||||
}
|
||||
|
||||
tempa[0] = tempa[0] ^ Rcon[i/Nk];
|
||||
}
|
||||
#if defined(AES256) && (AES256 == 1)
|
||||
if (i % Nk == 4)
|
||||
{
|
||||
// Function Subword()
|
||||
{
|
||||
tempa[0] = getSBoxValue(tempa[0]);
|
||||
tempa[1] = getSBoxValue(tempa[1]);
|
||||
tempa[2] = getSBoxValue(tempa[2]);
|
||||
tempa[3] = getSBoxValue(tempa[3]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
j = i * 4; k=(i - Nk) * 4;
|
||||
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
|
||||
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
|
||||
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
|
||||
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
|
||||
}
|
||||
}
|
||||
|
||||
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
|
||||
{
|
||||
KeyExpansion(ctx->RoundKey, key);
|
||||
}
|
||||
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
|
||||
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
|
||||
{
|
||||
KeyExpansion(ctx->RoundKey, key);
|
||||
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
|
||||
}
|
||||
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
|
||||
{
|
||||
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
|
||||
}
|
||||
#endif
|
||||
|
||||
// This function adds the round key to state.
|
||||
// The round key is added to the state by an XOR function.
|
||||
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
|
||||
{
|
||||
uint8_t i,j;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
for (j = 0; j < 4; ++j)
|
||||
{
|
||||
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The SubBytes Function Substitutes the values in the
|
||||
// state matrix with values in an S-box.
|
||||
static void SubBytes(state_t* state)
|
||||
{
|
||||
uint8_t i, j;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
for (j = 0; j < 4; ++j)
|
||||
{
|
||||
(*state)[j][i] = getSBoxValue((*state)[j][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The ShiftRows() function shifts the rows in the state to the left.
|
||||
// Each row is shifted with different offset.
|
||||
// Offset = Row number. So the first row is not shifted.
|
||||
static void ShiftRows(state_t* state)
|
||||
{
|
||||
uint8_t temp;
|
||||
|
||||
// Rotate first row 1 columns to left
|
||||
temp = (*state)[0][1];
|
||||
(*state)[0][1] = (*state)[1][1];
|
||||
(*state)[1][1] = (*state)[2][1];
|
||||
(*state)[2][1] = (*state)[3][1];
|
||||
(*state)[3][1] = temp;
|
||||
|
||||
// Rotate second row 2 columns to left
|
||||
temp = (*state)[0][2];
|
||||
(*state)[0][2] = (*state)[2][2];
|
||||
(*state)[2][2] = temp;
|
||||
|
||||
temp = (*state)[1][2];
|
||||
(*state)[1][2] = (*state)[3][2];
|
||||
(*state)[3][2] = temp;
|
||||
|
||||
// Rotate third row 3 columns to left
|
||||
temp = (*state)[0][3];
|
||||
(*state)[0][3] = (*state)[3][3];
|
||||
(*state)[3][3] = (*state)[2][3];
|
||||
(*state)[2][3] = (*state)[1][3];
|
||||
(*state)[1][3] = temp;
|
||||
}
|
||||
|
||||
static uint8_t xtime(uint8_t x)
|
||||
{
|
||||
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
|
||||
}
|
||||
|
||||
// MixColumns function mixes the columns of the state matrix
|
||||
static void MixColumns(state_t* state)
|
||||
{
|
||||
uint8_t i;
|
||||
uint8_t Tmp, Tm, t;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
t = (*state)[i][0];
|
||||
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
|
||||
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
|
||||
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
|
||||
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
|
||||
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply is used to multiply numbers in the field GF(2^8)
|
||||
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
|
||||
// The compiler seems to be able to vectorize the operation better this way.
|
||||
// See https://github.com/kokke/tiny-AES-c/pull/34
|
||||
#if MULTIPLY_AS_A_FUNCTION
|
||||
static uint8_t Multiply(uint8_t x, uint8_t y)
|
||||
{
|
||||
return (((y & 1) * x) ^
|
||||
((y>>1 & 1) * xtime(x)) ^
|
||||
((y>>2 & 1) * xtime(xtime(x))) ^
|
||||
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
|
||||
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
|
||||
}
|
||||
#else
|
||||
#define Multiply(x, y) \
|
||||
( ((y & 1) * x) ^ \
|
||||
((y>>1 & 1) * xtime(x)) ^ \
|
||||
((y>>2 & 1) * xtime(xtime(x))) ^ \
|
||||
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
|
||||
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
|
||||
|
||||
#endif
|
||||
|
||||
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
// MixColumns function mixes the columns of the state matrix.
|
||||
// The method used to multiply may be difficult to understand for the inexperienced.
|
||||
// Please use the references to gain more information.
|
||||
static void InvMixColumns(state_t* state)
|
||||
{
|
||||
int i;
|
||||
uint8_t a, b, c, d;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
a = (*state)[i][0];
|
||||
b = (*state)[i][1];
|
||||
c = (*state)[i][2];
|
||||
d = (*state)[i][3];
|
||||
|
||||
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
|
||||
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
|
||||
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
|
||||
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// The SubBytes Function Substitutes the values in the
|
||||
// state matrix with values in an S-box.
|
||||
static void InvSubBytes(state_t* state)
|
||||
{
|
||||
uint8_t i, j;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
for (j = 0; j < 4; ++j)
|
||||
{
|
||||
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void InvShiftRows(state_t* state)
|
||||
{
|
||||
uint8_t temp;
|
||||
|
||||
// Rotate first row 1 columns to right
|
||||
temp = (*state)[3][1];
|
||||
(*state)[3][1] = (*state)[2][1];
|
||||
(*state)[2][1] = (*state)[1][1];
|
||||
(*state)[1][1] = (*state)[0][1];
|
||||
(*state)[0][1] = temp;
|
||||
|
||||
// Rotate second row 2 columns to right
|
||||
temp = (*state)[0][2];
|
||||
(*state)[0][2] = (*state)[2][2];
|
||||
(*state)[2][2] = temp;
|
||||
|
||||
temp = (*state)[1][2];
|
||||
(*state)[1][2] = (*state)[3][2];
|
||||
(*state)[3][2] = temp;
|
||||
|
||||
// Rotate third row 3 columns to right
|
||||
temp = (*state)[0][3];
|
||||
(*state)[0][3] = (*state)[1][3];
|
||||
(*state)[1][3] = (*state)[2][3];
|
||||
(*state)[2][3] = (*state)[3][3];
|
||||
(*state)[3][3] = temp;
|
||||
}
|
||||
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
|
||||
// Cipher is the main function that encrypts the PlainText.
|
||||
static void Cipher(state_t* state, const uint8_t* RoundKey)
|
||||
{
|
||||
uint8_t round = 0;
|
||||
|
||||
// Add the First round key to the state before starting the rounds.
|
||||
AddRoundKey(0, state, RoundKey);
|
||||
|
||||
// There will be Nr rounds.
|
||||
// The first Nr-1 rounds are identical.
|
||||
// These Nr rounds are executed in the loop below.
|
||||
// Last one without MixColumns()
|
||||
for (round = 1; ; ++round)
|
||||
{
|
||||
SubBytes(state);
|
||||
ShiftRows(state);
|
||||
if (round == Nr) {
|
||||
break;
|
||||
}
|
||||
MixColumns(state);
|
||||
AddRoundKey(round, state, RoundKey);
|
||||
}
|
||||
// Add round key to last round
|
||||
AddRoundKey(Nr, state, RoundKey);
|
||||
}
|
||||
|
||||
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
static void InvCipher(state_t* state, const uint8_t* RoundKey)
|
||||
{
|
||||
uint8_t round = 0;
|
||||
|
||||
// Add the First round key to the state before starting the rounds.
|
||||
AddRoundKey(Nr, state, RoundKey);
|
||||
|
||||
// There will be Nr rounds.
|
||||
// The first Nr-1 rounds are identical.
|
||||
// These Nr rounds are executed in the loop below.
|
||||
// Last one without InvMixColumn()
|
||||
for (round = (Nr - 1); ; --round)
|
||||
{
|
||||
InvShiftRows(state);
|
||||
InvSubBytes(state);
|
||||
AddRoundKey(round, state, RoundKey);
|
||||
if (round == 0) {
|
||||
break;
|
||||
}
|
||||
InvMixColumns(state);
|
||||
}
|
||||
|
||||
}
|
||||
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Public functions: */
|
||||
/*****************************************************************************/
|
||||
#if defined(ECB) && (ECB == 1)
|
||||
|
||||
|
||||
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
|
||||
{
|
||||
// The next function call encrypts the PlainText with the Key using AES algorithm.
|
||||
Cipher((state_t*)buf, ctx->RoundKey);
|
||||
}
|
||||
|
||||
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
|
||||
{
|
||||
// The next function call decrypts the PlainText with the Key using AES algorithm.
|
||||
InvCipher((state_t*)buf, ctx->RoundKey);
|
||||
}
|
||||
|
||||
|
||||
#endif // #if defined(ECB) && (ECB == 1)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#if defined(CBC) && (CBC == 1)
|
||||
|
||||
|
||||
static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
|
||||
{
|
||||
uint8_t i;
|
||||
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
|
||||
{
|
||||
buf[i] ^= Iv[i];
|
||||
}
|
||||
}
|
||||
|
||||
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, uint32_t length)
|
||||
{
|
||||
uintptr_t i;
|
||||
uint8_t *Iv = ctx->Iv;
|
||||
for (i = 0; i < length; i += AES_BLOCKLEN)
|
||||
{
|
||||
XorWithIv(buf, Iv);
|
||||
Cipher((state_t*)buf, ctx->RoundKey);
|
||||
Iv = buf;
|
||||
buf += AES_BLOCKLEN;
|
||||
}
|
||||
/* store Iv in ctx for next call */
|
||||
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
|
||||
}
|
||||
|
||||
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
|
||||
{
|
||||
uintptr_t i;
|
||||
uint8_t storeNextIv[AES_BLOCKLEN];
|
||||
for (i = 0; i < length; i += AES_BLOCKLEN)
|
||||
{
|
||||
memcpy(storeNextIv, buf, AES_BLOCKLEN);
|
||||
InvCipher((state_t*)buf, ctx->RoundKey);
|
||||
XorWithIv(buf, ctx->Iv);
|
||||
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
|
||||
buf += AES_BLOCKLEN;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // #if defined(CBC) && (CBC == 1)
|
||||
|
||||
|
||||
|
||||
#if defined(CTR) && (CTR == 1)
|
||||
|
||||
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
|
||||
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
|
||||
{
|
||||
uint8_t buffer[AES_BLOCKLEN];
|
||||
|
||||
unsigned i;
|
||||
int bi;
|
||||
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
|
||||
{
|
||||
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
|
||||
{
|
||||
|
||||
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
|
||||
Cipher((state_t*)buffer,ctx->RoundKey);
|
||||
|
||||
/* Increment Iv and handle overflow */
|
||||
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
|
||||
{
|
||||
/* inc will overflow */
|
||||
if (ctx->Iv[bi] == 255)
|
||||
{
|
||||
ctx->Iv[bi] = 0;
|
||||
continue;
|
||||
}
|
||||
ctx->Iv[bi] += 1;
|
||||
break;
|
||||
}
|
||||
bi = 0;
|
||||
}
|
||||
|
||||
buf[i] = (buf[i] ^ buffer[bi]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // #if defined(CTR) && (CTR == 1)
|
||||
|
90
src/knx/aes.h
Normal file
90
src/knx/aes.h
Normal file
@ -0,0 +1,90 @@
|
||||
#ifndef _AES_H_
|
||||
#define _AES_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// #define the macros below to 1/0 to enable/disable the mode of operation.
|
||||
//
|
||||
// CBC enables AES encryption in CBC-mode of operation.
|
||||
// CTR enables encryption in counter-mode.
|
||||
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
|
||||
|
||||
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
|
||||
#ifndef CBC
|
||||
#define CBC 1
|
||||
#endif
|
||||
|
||||
#ifndef ECB
|
||||
#define ECB 1
|
||||
#endif
|
||||
|
||||
#ifndef CTR
|
||||
#define CTR 1
|
||||
#endif
|
||||
|
||||
|
||||
#define AES128 1
|
||||
//#define AES192 1
|
||||
//#define AES256 1
|
||||
|
||||
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
|
||||
|
||||
#if defined(AES256) && (AES256 == 1)
|
||||
#define AES_KEYLEN 32
|
||||
#define AES_keyExpSize 240
|
||||
#elif defined(AES192) && (AES192 == 1)
|
||||
#define AES_KEYLEN 24
|
||||
#define AES_keyExpSize 208
|
||||
#else
|
||||
#define AES_KEYLEN 16 // Key length in bytes
|
||||
#define AES_keyExpSize 176
|
||||
#endif
|
||||
|
||||
struct AES_ctx
|
||||
{
|
||||
uint8_t RoundKey[AES_keyExpSize];
|
||||
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
|
||||
uint8_t Iv[AES_BLOCKLEN];
|
||||
#endif
|
||||
};
|
||||
|
||||
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
|
||||
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
|
||||
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
|
||||
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
|
||||
#endif
|
||||
|
||||
#if defined(ECB) && (ECB == 1)
|
||||
// buffer size is exactly AES_BLOCKLEN bytes;
|
||||
// you need only AES_init_ctx as IV is not used in ECB
|
||||
// NB: ECB is considered insecure for most uses
|
||||
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
|
||||
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);
|
||||
|
||||
#endif // #if defined(ECB) && (ECB == !)
|
||||
|
||||
|
||||
#if defined(CBC) && (CBC == 1)
|
||||
// buffer size MUST be mutile of AES_BLOCKLEN;
|
||||
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
|
||||
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
|
||||
// no IV should ever be reused with the same key
|
||||
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
|
||||
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
|
||||
|
||||
#endif // #if defined(CBC) && (CBC == 1)
|
||||
|
||||
|
||||
#if defined(CTR) && (CTR == 1)
|
||||
|
||||
// Same function for encrypting as for decrypting.
|
||||
// IV is incremented for every block, and used after encryption as XOR-compliment for output
|
||||
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
|
||||
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
|
||||
// no IV should ever be reused with the same key
|
||||
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
|
||||
|
||||
#endif // #if defined(CTR) && (CTR == 1)
|
||||
|
||||
|
||||
#endif // _AES_H_
|
12
src/knx/aes.hpp
Normal file
12
src/knx/aes.hpp
Normal file
@ -0,0 +1,12 @@
|
||||
#ifndef _AES_HPP_
|
||||
#define _AES_HPP_
|
||||
|
||||
#ifndef __cplusplus
|
||||
#error Do not include the hpp header in a c project!
|
||||
#endif //__cplusplus
|
||||
|
||||
extern "C" {
|
||||
#include "aes.h"
|
||||
}
|
||||
|
||||
#endif //_AES_HPP_
|
@ -423,7 +423,8 @@ void ApplicationLayer::systemNetworkParameterReadResponse(Priority priority, Hop
|
||||
|
||||
//apdu.printPDU();
|
||||
|
||||
dataSystemBroadcastRequest(AckDontCare, hopType, SystemPriority, apdu);
|
||||
//dataSystemBroadcastRequest(AckDontCare, hopType, SystemPriority, apdu);
|
||||
dataBroadcastRequest(AckDontCare, hopType, SystemPriority, apdu);
|
||||
}
|
||||
|
||||
//TODO: ApplicationLayer::domainAddressSerialNumberWriteRequest()
|
||||
|
@ -108,10 +108,15 @@ void DataLinkLayer::frameRecieved(CemiFrame& frame)
|
||||
|
||||
if (addrType == GroupAddress && destination == 0)
|
||||
{
|
||||
#if !defined(USE_TP)
|
||||
if (systemBroadcast == SysBroadcast)
|
||||
_networkLayer.systemBroadcastIndication(ack, type, npdu, priority, source);
|
||||
else
|
||||
_networkLayer.broadcastIndication(ack, type, npdu, priority, source);
|
||||
#else
|
||||
_networkLayer.systemBroadcastIndication(ack, type, npdu, priority, source);
|
||||
_networkLayer.broadcastIndication(ack, type, npdu, priority, source);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -10,7 +10,7 @@
|
||||
DeviceObject::DeviceObject()
|
||||
{
|
||||
//Default to KNXA (0xFA)
|
||||
uint8_t serialNumber[] = {0x00, 0xFA, 0x00, 0x00, 0x00, 0x00};
|
||||
uint8_t serialNumber[] = {0x00, 0xFA, 0x01, 0x02, 0x03, 0x04};
|
||||
uint8_t hardwareType[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||||
|
||||
Property* properties[] =
|
||||
|
@ -70,6 +70,17 @@ void IpDataLinkLayer::loop()
|
||||
_platform.sendBytesUniCast(hpai.ipAddress(), hpai.ipPortNumber(), searchResponse.data(), searchResponse.totalLength());
|
||||
break;
|
||||
}
|
||||
/*
|
||||
case SearchRequestSecure:
|
||||
{
|
||||
KnxIpSearchRequest searchRequest(buffer, len);
|
||||
KnxIpSearchResponse searchResponse(_ipParameters, _deviceObject);
|
||||
searchResponse.serviceTypeIdentifier(SearchResponseSecure);
|
||||
|
||||
auto hpai = searchRequest.hpai();
|
||||
_platform.sendBytesUniCast(hpai.ipAddress(), hpai.ipPortNumber(), searchResponse.data(), searchResponse.totalLength());
|
||||
break;
|
||||
}*/
|
||||
default:
|
||||
print("Unhandled service identifier: ");
|
||||
println(code, HEX);
|
||||
@ -108,4 +119,4 @@ bool IpDataLinkLayer::sendBytes(uint8_t* bytes, uint16_t length)
|
||||
|
||||
return _platform.sendBytesMultiCast(bytes, length);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@ -23,6 +23,8 @@ enum KnxIpServiceType
|
||||
ConnectionStateResponse = 0x208,
|
||||
DisconnectRequest = 0x209,
|
||||
DisconnectResponse = 0x20A,
|
||||
SearchRequestSecure = 0x20B,
|
||||
SearchResponseSecure = 0x20C,
|
||||
DeviceConfigurationRequest = 0x310,
|
||||
DeviceConfigurationAck = 0x311,
|
||||
TunnelingRequest = 0x420,
|
||||
@ -55,4 +57,4 @@ class KnxIpFrame
|
||||
uint8_t* _data = 0;
|
||||
uint16_t _dataLength;
|
||||
};
|
||||
#endif
|
||||
#endif
|
||||
|
@ -22,8 +22,8 @@ KnxIpSearchResponse::KnxIpSearchResponse(IpParameterObject& parameters, DeviceOb
|
||||
_deviceInfo.indiviudalAddress(parameters.propertyValue<uint16_t>(PID_KNX_INDIVIDUAL_ADDRESS));
|
||||
_deviceInfo.projectInstallationIdentifier(parameters.propertyValue<uint16_t>(PID_PROJECT_INSTALLATION_ID));
|
||||
_deviceInfo.serialNumber(deviceObject.propertyData(PID_SERIAL_NUMBER));
|
||||
//_deviceInfo.routingMulticastAddress(parameters.propertyValue<uint32_t>(PID_ROUTING_MULTICAST_ADDRESS));
|
||||
_deviceInfo.routingMulticastAddress(0);
|
||||
_deviceInfo.routingMulticastAddress(parameters.propertyValue<uint32_t>(PID_ROUTING_MULTICAST_ADDRESS));
|
||||
//_deviceInfo.routingMulticastAddress(0);
|
||||
|
||||
uint8_t mac_address[LEN_MAC_ADDRESS] = {0};
|
||||
Property* prop = parameters.property(PID_MAC_ADDRESS);
|
||||
@ -59,4 +59,4 @@ KnxIpSupportedServiceDIB& KnxIpSearchResponse::supportedServices()
|
||||
{
|
||||
return _supportedServices;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@ -150,4 +150,7 @@ enum ApduType
|
||||
PropertyValueWrite = 0x3d7,
|
||||
PropertyDescriptionRead = 0x3d8,
|
||||
PropertyDescriptionResponse = 0x3d9,
|
||||
|
||||
// Secure Service
|
||||
SecureService = 0x3F1
|
||||
};
|
||||
|
@ -6,8 +6,18 @@
|
||||
#include "bau.h"
|
||||
#include "string.h"
|
||||
#include "bits.h"
|
||||
#include "aes.hpp"
|
||||
#include <stdio.h>
|
||||
|
||||
const uint8_t SecureDataPdu = 0;
|
||||
const uint8_t SecureServiceRequest = 2;
|
||||
const uint8_t SecureServiceResponse = 3;
|
||||
|
||||
uint8_t lastValidSequenceNumberTool = 0;
|
||||
|
||||
// Our FDSK
|
||||
uint8_t SecureApplicationLayer::_key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
|
||||
|
||||
SecureApplicationLayer::SecureApplicationLayer(AssociationTableObject& assocTable, BusAccessUnit& bau):
|
||||
ApplicationLayer(assocTable, bau)
|
||||
{
|
||||
@ -104,3 +114,413 @@ void SecureApplicationLayer::dataConnectedRequest(uint16_t tsap, Priority priori
|
||||
// apdu must be valid until it was confirmed
|
||||
ApplicationLayer::dataConnectedRequest(tsap, priority, apdu);
|
||||
}
|
||||
|
||||
class TpTelegram
|
||||
{
|
||||
public:
|
||||
TpTelegram()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
~TpTelegram()
|
||||
{
|
||||
if (_data)
|
||||
delete[] _data;
|
||||
}
|
||||
|
||||
void parseByteArray(uint8_t *buf)
|
||||
{
|
||||
_ctrlField = buf[0];
|
||||
_ctrlFieldExt = buf[1];
|
||||
_srcAddr = buf[2] << 8 | buf[3];
|
||||
_dstAddr = buf[4] << 8 | buf[5];
|
||||
_dataLen = buf[6];
|
||||
|
||||
// Copy starting from TPCI octet
|
||||
_dataLen += 1;
|
||||
_data = new uint8_t (_dataLen);
|
||||
memcpy(_data, &buf[7], _dataLen);
|
||||
}
|
||||
|
||||
uint16_t SrcAddr()
|
||||
{
|
||||
return _srcAddr;
|
||||
}
|
||||
|
||||
uint16_t DstAddr()
|
||||
{
|
||||
return _dstAddr;
|
||||
}
|
||||
|
||||
uint8_t Tpci()
|
||||
{
|
||||
uint8_t tpci;
|
||||
|
||||
tpci = (_data[0] & 0xFC) >> 2;
|
||||
|
||||
return tpci;
|
||||
}
|
||||
|
||||
uint16_t Apci()
|
||||
{
|
||||
uint16_t apci;
|
||||
|
||||
if (_dataLen > 1)
|
||||
{
|
||||
apci = (_data[0] & 0x03) << 8 | _data[1];
|
||||
}
|
||||
else
|
||||
{
|
||||
apci = (_data[0] & 0x03);
|
||||
}
|
||||
|
||||
return apci;
|
||||
}
|
||||
|
||||
uint8_t* Apdu()
|
||||
{
|
||||
return _data;
|
||||
}
|
||||
|
||||
uint16_t ApduLen()
|
||||
{
|
||||
return _dataLen;
|
||||
}
|
||||
|
||||
uint8_t* Asdu()
|
||||
{
|
||||
return _data + 2;
|
||||
}
|
||||
|
||||
uint16_t AsduLen()
|
||||
{
|
||||
return _dataLen - 2;
|
||||
}
|
||||
|
||||
bool isSecureTelegram()
|
||||
{
|
||||
return Apci() == SecureService;
|
||||
}
|
||||
|
||||
private:
|
||||
uint8_t _ctrlField;
|
||||
uint8_t _ctrlFieldExt;
|
||||
uint16_t _srcAddr;
|
||||
uint16_t _dstAddr;
|
||||
uint8_t _dataLen;
|
||||
uint8_t* _data;
|
||||
|
||||
};
|
||||
|
||||
uint32_t SecureApplicationLayer::calcAuthOnlyMac(uint8_t* apdu, uint8_t apduLength, uint8_t* key, uint8_t* iv, uint8_t* ctr0)
|
||||
{
|
||||
uint16_t bufLen = 2 + apduLength; // 2 bytes for the length field (uint16_t)
|
||||
// AES-128 operates on blocks of 16 bytes, add padding
|
||||
uint16_t bufLenPadded = (bufLen + 15) / 16 * 16;
|
||||
uint8_t buffer[bufLenPadded];
|
||||
// Make sure to have zeroes everywhere, because of the padding
|
||||
memset(buffer, 0x00, bufLenPadded);
|
||||
|
||||
uint8_t* pBuf = buffer;
|
||||
|
||||
pBuf = pushWord(apduLength, pBuf);
|
||||
pBuf = pushByteArray(apdu, apduLength, pBuf);
|
||||
|
||||
// Use zeroes as IV for first round
|
||||
uint8_t zeroIv[16] = {0x00};
|
||||
|
||||
struct AES_ctx ctx1;
|
||||
AES_init_ctx_iv(&ctx1, key, zeroIv);
|
||||
// Now encrypt first block B0
|
||||
AES_CBC_encrypt_buffer(&ctx1, iv, 16);
|
||||
// Encrypt remaining buffer
|
||||
AES_CBC_encrypt_buffer(&ctx1, buffer, bufLenPadded);
|
||||
|
||||
struct AES_ctx ctx2;
|
||||
AES_init_ctx_iv(&ctx2, key, ctr0);
|
||||
AES_CTR_xcrypt_buffer(&ctx2, buffer, 4); // 4 bytes only for the MAC
|
||||
|
||||
uint32_t mac;
|
||||
popInt(mac, &buffer[0]);
|
||||
|
||||
return mac;
|
||||
}
|
||||
|
||||
uint32_t SecureApplicationLayer::calcConfAuthMac(uint8_t* associatedData, uint16_t associatedDataLength,
|
||||
uint8_t* apdu, uint8_t apduLength,
|
||||
uint8_t* key, uint8_t* iv)
|
||||
{
|
||||
uint16_t bufLen = 2 + associatedDataLength + apduLength; // 2 bytes for the length field (uint16_t)
|
||||
// AES-128 operates on blocks of 16 bytes, add padding
|
||||
uint16_t bufLenPadded = (bufLen + 15) / 16 * 16;
|
||||
uint8_t buffer[bufLenPadded];
|
||||
// Make sure to have zeroes everywhere, because of the padding
|
||||
memset(buffer, 0x00, bufLenPadded);
|
||||
|
||||
uint8_t* pBuf = buffer;
|
||||
|
||||
pBuf = pushWord(associatedDataLength, pBuf);
|
||||
pBuf = pushByteArray(associatedData, associatedDataLength, pBuf);
|
||||
pBuf = pushByteArray(apdu, apduLength, pBuf);
|
||||
|
||||
// Use zeroes as IV for first round
|
||||
uint8_t zeroIv[16] = {0x00};
|
||||
|
||||
struct AES_ctx ctx;
|
||||
AES_init_ctx_iv(&ctx, key, zeroIv);
|
||||
// Now encrypt first block B0
|
||||
AES_CBC_encrypt_buffer(&ctx, iv, 16);
|
||||
// Encrypt remaining buffer
|
||||
AES_CBC_encrypt_buffer(&ctx, buffer, bufLenPadded);
|
||||
|
||||
uint32_t mac;
|
||||
popInt(mac, &buffer[bufLenPadded - 16]); // bufLenPadded has a guaranteed minimum size of 16 bytes
|
||||
|
||||
return mac;
|
||||
}
|
||||
|
||||
void SecureApplicationLayer::block0(uint8_t* buffer, uint8_t* seqNum, uint16_t indSrcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t extFrameFormat, uint8_t tpci, uint8_t apci, uint8_t payloadLength)
|
||||
{
|
||||
uint8_t* pBuf = buffer;
|
||||
pBuf = pushByteArray(seqNum, 6, pBuf);
|
||||
pBuf = pushWord(indSrcAddr, pBuf);
|
||||
pBuf = pushWord(dstAddr, pBuf);
|
||||
pBuf = pushByte(0x00, pBuf); // FT: frametype
|
||||
pBuf = pushByte( (dstAddrIsGroupAddr ? 0x80 : 0x00) | (extFrameFormat & 0xf), pBuf); // AT: address type
|
||||
pBuf = pushByte(tpci, pBuf); // TPCI
|
||||
pBuf = pushByte(apci, pBuf); // APCI // draft spec shows something different!
|
||||
pBuf = pushByte(0x00, pBuf); // Reserved: fixed 0x00 (really?)
|
||||
pBuf = pushByte(payloadLength, pBuf); // Payload length
|
||||
}
|
||||
|
||||
void SecureApplicationLayer::blockCtr0(uint8_t* buffer, uint8_t* seqNum, uint16_t indSrcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr)
|
||||
{
|
||||
uint8_t* pBuf = buffer;
|
||||
pBuf = pushByteArray(seqNum, 6, pBuf);
|
||||
pBuf = pushWord(indSrcAddr, pBuf);
|
||||
pBuf = pushWord(dstAddr, pBuf);
|
||||
pBuf = pushInt(0x00000000, pBuf);
|
||||
pBuf = pushByte(0x01, pBuf);
|
||||
}
|
||||
|
||||
uint64_t SecureApplicationLayer::lastValidSequenceNumber(bool toolAcces, uint16_t srcAddr)
|
||||
{
|
||||
if (toolAcces)
|
||||
{
|
||||
return lastValidSequenceNumberTool;
|
||||
}
|
||||
|
||||
// TODO
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool SecureApplicationLayer::decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* secureAsdu, uint16_t secureAdsuLength)
|
||||
{
|
||||
uint8_t extendedFrameFormat = 0;
|
||||
|
||||
const uint8_t* pBuf;
|
||||
uint8_t scf;
|
||||
|
||||
pBuf = popByte(scf, secureAsdu);
|
||||
|
||||
bool toolAccess = ((scf & 0x80) == 0x80);
|
||||
bool systemBroadcast = ((scf & 0x08) == 0x08);
|
||||
uint8_t sai = (scf >> 4) & 0x07; // sai can only be 0x0 (CCM auth only) or 0x1 (CCM with auth+conf), other values are reserved
|
||||
bool authOnly = ( sai == 0);
|
||||
uint8_t service = (scf & 0x07); // only 0x0 (S-A_Data-PDU), 0x2 (S-A_Sync_Req-PDU) or 0x3 (S-A_Sync_Rsp-PDU) are valid values
|
||||
|
||||
uint8_t seqNum[6];
|
||||
pBuf = popByteArray(seqNum, 6, pBuf);
|
||||
|
||||
if (service == SecureDataPdu)
|
||||
{
|
||||
uint64_t receivedSeqNumber = ((uint64_t)seqNum[0] << 40) | ((uint64_t)seqNum[1] << 32) | ((uint64_t)seqNum[2] << 24) |
|
||||
((uint64_t)seqNum[3] << 16) | ((uint64_t)seqNum[4] << 8) | (uint64_t)seqNum[5];
|
||||
uint64_t expectedSeqNumber = lastValidSequenceNumber(toolAccess, srcAddr) + 1;
|
||||
|
||||
if (receivedSeqNumber < expectedSeqNumber)
|
||||
{
|
||||
// security failure
|
||||
print("security failure: received seqNum: ");
|
||||
print(receivedSeqNumber, HEX);
|
||||
print(" < expected seqNum: ");
|
||||
print(expectedSeqNumber, HEX);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t apduLength = secureAdsuLength - 1 - 6 - 4; // secureAdsuLength - sizeof(scf) - sizeof(seqNum) - sizeof(mac)
|
||||
pBuf = popByteArray(plainApdu, apduLength, pBuf);
|
||||
|
||||
// Clear IV buffer
|
||||
uint8_t iv[16] = {0x00};
|
||||
// Create first block B0 for AES CBC MAC calculation, used as IV later
|
||||
block0(iv, seqNum, srcAddr, dstAddr, false, extendedFrameFormat, tpci | (SecureService >> 8), SecureService & 0x00FF, apduLength);
|
||||
|
||||
// Clear block counter0 buffer
|
||||
uint8_t ctr0[16] = {0x00};
|
||||
// Create first block for block counter 0
|
||||
blockCtr0(ctr0, seqNum, srcAddr, dstAddr, false);
|
||||
|
||||
uint32_t mac;
|
||||
pBuf = popInt(mac, pBuf);
|
||||
|
||||
if (authOnly)
|
||||
{
|
||||
// APDU is already plain, no decryption needed
|
||||
|
||||
// Only check the MAC
|
||||
uint32_t calculatedMac = calcAuthOnlyMac(plainApdu, apduLength, _key, iv, ctr0);
|
||||
if (calculatedMac != mac)
|
||||
{
|
||||
// security failure
|
||||
print("security failure: calculated MAC: ");
|
||||
print(calculatedMac, HEX);
|
||||
print(" != received MAC: ");
|
||||
print(mac, HEX);
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// APDU is encrypted and needs decryption
|
||||
|
||||
uint16_t bufLen = 4 + apduLength;
|
||||
// AES-128 operates on blocks of 16 bytes, add padding
|
||||
//uint16_t bufLenPadded = (bufLen + 15) / 16 * 16;
|
||||
//uint8_t buffer[bufLenPadded];
|
||||
uint8_t buffer[bufLen];
|
||||
// Make sure to have zeroes everywhere, because of the padding
|
||||
//memset(buffer, 0x00, bufLenPadded);
|
||||
|
||||
pushInt(mac, &buffer[0]);
|
||||
pushByteArray(plainApdu, apduLength, &buffer[4]); // apdu is still encrypted
|
||||
|
||||
struct AES_ctx ctx;
|
||||
AES_init_ctx_iv(&ctx, _key, ctr0);
|
||||
//AES_CTR_xcrypt_buffer(&ctx, buffer, bufLenPadded);
|
||||
AES_CTR_xcrypt_buffer(&ctx, buffer, bufLen);
|
||||
|
||||
uint32_t decryptedMac;
|
||||
popInt(decryptedMac, &buffer[0]);
|
||||
popByteArray(plainApdu, apduLength, &buffer[4]); // apdu is now decrypted (overwritten)
|
||||
|
||||
// Do calculations for Auth+Conf
|
||||
uint8_t associatedData[1] = {scf};
|
||||
uint32_t calculatedMac = calcConfAuthMac(associatedData, sizeof(associatedData), plainApdu, apduLength, _key, iv);
|
||||
if (calculatedMac != decryptedMac)
|
||||
{
|
||||
// security failure
|
||||
print("security failure: calculated MAC: ");
|
||||
print(calculatedMac, HEX);
|
||||
print(" != decrypted MAC: ");
|
||||
print(decryptedMac, HEX);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
void SecureApplicationLayer::test_datasecure_decrypt()
|
||||
{
|
||||
TpTelegram t;
|
||||
t.parseByteArray(secureTelegram);
|
||||
|
||||
if (t.isSecureTelegram())
|
||||
{
|
||||
uint16_t apduLength = t.AsduLen() - 1 - 6 - 4; // secureAdsuLength - sizeof(scf) - sizeof(seqNum) - sizeof(mac)
|
||||
uint8_t apdu[apduLength];
|
||||
|
||||
if (decrypt(apdu, t.SrcAddr(), t.DstAddr(), t.Tpci(), t.Asdu(), t.AsduLen()))
|
||||
{
|
||||
std::cout << "Plain APDU: ";
|
||||
for (uint8_t i = 0; i< apduLength; i++)
|
||||
{
|
||||
std::cout << std::hex << static_cast<unsigned int>(apdu[i]) << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Telegram is not secured!" << std::endl;
|
||||
}
|
||||
}
|
||||
*/
|
||||
void SecureApplicationLayer::encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* apdu, uint16_t apduLength)
|
||||
{
|
||||
uint8_t scf = 0x90;
|
||||
uint8_t seqNum[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x04};
|
||||
bool authOnly = false;
|
||||
uint8_t extendedFrameFormat = 0;
|
||||
|
||||
// Clear IV buffer
|
||||
uint8_t iv[16] = {0x00};
|
||||
// Create first block B0 for AES CBC MAC calculation, used as IV later
|
||||
block0(iv, seqNum, srcAddr, dstAddr, false, extendedFrameFormat, tpci | (SecureService >> 8), SecureService & 0x00FF, apduLength);
|
||||
|
||||
// Clear block counter0 buffer
|
||||
uint8_t ctr0[16] = {0x00};
|
||||
// Create first block for block counter 0
|
||||
blockCtr0(ctr0, seqNum, srcAddr, dstAddr, false);
|
||||
|
||||
if (authOnly)
|
||||
{
|
||||
// Do calculations for AuthOnly
|
||||
uint32_t tmpMac = calcAuthOnlyMac(apdu, apduLength, _key, iv, ctr0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Do calculations for Auth+Conf
|
||||
uint8_t associatedData[1] = {scf};
|
||||
uint32_t mac = calcConfAuthMac(associatedData, sizeof(associatedData), apdu, apduLength, _key, iv);
|
||||
|
||||
pushInt(mac, buffer);
|
||||
pushByteArray(apdu, apduLength, &buffer[4]);
|
||||
|
||||
struct AES_ctx ctx;
|
||||
AES_init_ctx_iv(&ctx, _key, ctr0);
|
||||
AES_CTR_xcrypt_buffer(&ctx, buffer, apduLength + 4); // APDU + MAC (4 bytes)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
void SecureApplicationLayer::test_datasecure_encrypt()
|
||||
{
|
||||
TpTelegram t;
|
||||
t.parseByteArray(plainTelegram);
|
||||
|
||||
if (!t.isSecureTelegram())
|
||||
{
|
||||
uint16_t bufLen = 4 + t.ApduLen();
|
||||
// AES-128 operates on blocks of 16 bytes, add padding
|
||||
//uint16_t bufLenPadded = (bufLen + 15) / 16 * 16;
|
||||
//uint8_t buffer[bufLenPadded];
|
||||
uint8_t buffer[bufLen];
|
||||
// Make sure to have zeroes everywhere, because of the padding
|
||||
//memset(buffer, 0x00, bufLenPadded);
|
||||
|
||||
encrypt(buffer, t.SrcAddr(), t.DstAddr(), t.Tpci(), t.Apdu(), t.ApduLen());
|
||||
|
||||
std::cout << "Secure Data: ";
|
||||
for (uint8_t i = 0; i< t.ApduLen(); i++)
|
||||
{
|
||||
std::cout << std::hex << static_cast<unsigned int>(buffer[4+i]) << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
uint32_t mac;
|
||||
popInt(mac, &buffer[0]);
|
||||
|
||||
std::cout << std::hex << "MAC: " << mac << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Telegram is secured!" << std::endl;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
@ -50,4 +50,18 @@ class SecureApplicationLayer : public ApplicationLayer
|
||||
virtual void dataConnectedRequest(uint16_t tsap, Priority priority, APDU& apdu); // apdu must be valid until it was confirmed
|
||||
|
||||
private:
|
||||
uint32_t calcAuthOnlyMac(uint8_t* apdu, uint8_t apduLength, uint8_t* key, uint8_t* iv, uint8_t* ctr0);
|
||||
uint32_t calcConfAuthMac(uint8_t* associatedData, uint16_t associatedDataLength, uint8_t* apdu, uint8_t apduLength, uint8_t* key, uint8_t* iv);
|
||||
|
||||
void block0(uint8_t* buffer, uint8_t* seqNum, uint16_t indSrcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr, uint8_t extFrameFormat, uint8_t tpci, uint8_t apci, uint8_t payloadLength);
|
||||
void blockCtr0(uint8_t* buffer, uint8_t* seqNum, uint16_t indSrcAddr, uint16_t dstAddr, bool dstAddrIsGroupAddr);
|
||||
|
||||
uint64_t lastValidSequenceNumber(bool toolAcces, uint16_t srcAddr);
|
||||
|
||||
bool decrypt(uint8_t* plainApdu, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* secureAsdu, uint16_t secureAdsuLength);
|
||||
void encrypt(uint8_t* buffer, uint16_t srcAddr, uint16_t dstAddr, uint8_t tpci, uint8_t* apdu, uint16_t apduLength);
|
||||
|
||||
// Our FDSK
|
||||
static uint8_t _key[];
|
||||
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user