Branch flash pr with large eeprom (#177)

* save WIP on flash api + header reorder

* reduce diffs to master

* added support for RP2040 (Raspberry Pi Pico)

* support DPT9.009 (airflow) and DPT9.029 (absolute humidity)

* added support for RP2040 (Raspberry Pi Pico) (#145)

* worked on flash implementation

* worked on flash implementation

* added malloc for _EraseBlockBuffer, fixed some bugs

* fixed memoryread and crash while loading KOs (+debugstuff)

* some fixes and debugs

* align to pagesize

* clean up debug stuff, comments ...

* added support for both Eeprom and Flash (NvMemoryType) plattforms.

* changed memoryReadIndicationP to memoryReadIndication
added stdlib and defines

* fixed std::min

* another try for fixing the min problem

* rolled back linux plattform to eeprom

* comments only, hints for plattforms

* bugfix when calculating memorywrites over multiple blocks by mumpf

* added support for EEPROM-Emulation / RAM-buffered Flash
improvements in RP2040 plattform

* fixed typo in KNX_FLASH_OFFSET

* - writebuffersize clarified (PR discussion)
- changed alignment from flashpagesize to 32bit
- added override modifier (PR discussion)
- changed comment regarding flash/eeprom functions for plattforms to override/implement (PR discussion)

* resolved CodeFactor issue

Co-authored-by: Thomas Kunze <thomas.kunze@gmx.com>
This commit is contained in:
SirSydom 2022-02-22 14:24:36 +01:00 committed by GitHub
parent 53425e2ef7
commit a306174878
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 461 additions and 55 deletions

View File

@ -112,9 +112,14 @@ void BauSystemB::memoryWriteIndication(Priority priority, HopCountType hopType,
uint16_t memoryAddress, uint8_t * data)
{
_memory.writeMemory(memoryAddress, number, data);
if (_deviceObj.verifyMode())
memoryReadIndication(priority, hopType, asap, secCtrl, number, memoryAddress);
memoryReadIndication(priority, hopType, asap, secCtrl, number, memoryAddress, data);
}
void BauSystemB::memoryReadIndication(Priority priority, HopCountType hopType, uint16_t asap, const SecurityControl &secCtrl, uint8_t number,
uint16_t memoryAddress, uint8_t * data)
{
applicationLayer().memoryReadResponse(AckRequested, priority, hopType, asap, secCtrl, number, memoryAddress, data);
}
void BauSystemB::memoryReadIndication(Priority priority, HopCountType hopType, uint16_t asap, const SecurityControl &secCtrl, uint8_t number,

View File

@ -48,6 +48,8 @@ class BauSystemB : protected BusAccessUnit
uint16_t memoryAddress, uint8_t* data) override;
void memoryReadIndication(Priority priority, HopCountType hopType, uint16_t asap, const SecurityControl &secCtrl, uint8_t number,
uint16_t memoryAddress) override;
void memoryReadIndication(Priority priority, HopCountType hopType, uint16_t asap, const SecurityControl &secCtrl, uint8_t number,
uint16_t memoryAddress, uint8_t * data);
void memoryExtWriteIndication(Priority priority, HopCountType hopType, uint16_t asap, const SecurityControl &secCtrl, uint8_t number,
uint32_t memoryAddress, uint8_t* data) override;
void memoryExtReadIndication(Priority priority, HopCountType hopType, uint16_t asap, const SecurityControl &secCtrl, uint8_t number,

View File

@ -1,29 +1,36 @@
#include "memory.h"
#include <string.h>
#include "bits.h"
Memory::Memory(Platform& platform, DeviceObject& deviceObject)
: _platform(platform), _deviceObject(deviceObject)
{
}
{}
Memory::~Memory()
{}
void Memory::readMemory()
{
println("readMemory");
if (_data != nullptr)
uint8_t* flashStart = _platform.getNonVolatileMemoryStart();
size_t flashSize = _platform.getNonVolatileMemorySize();
if (flashStart == nullptr)
{
println("no user flash available;");
return;
}
uint16_t flashSize = KNX_FLASH_SIZE;
_data = _platform.getEepromBuffer(flashSize);
printHex("RESTORED ", _data, _metadataSize);
printHex("RESTORED ", flashStart, _metadataSize);
uint16_t metadataBlockSize = alignToPageSize(_metadataSize);
_freeList = new MemoryBlock(_data + metadataBlockSize, flashSize - metadataBlockSize);
_freeList = new MemoryBlock(flashStart + metadataBlockSize, flashSize - metadataBlockSize);
uint16_t manufacturerId = 0;
const uint8_t* buffer = popWord(manufacturerId, _data);
const uint8_t* buffer = popWord(manufacturerId, flashStart);
uint8_t hardwareType[LEN_HARDWARE_TYPE] = {0};
buffer = popByteArray(hardwareType, LEN_HARDWARE_TYPE, buffer);
@ -58,7 +65,7 @@ void Memory::readMemory()
println(_saveCount);
for (int i = 0; i < _saveCount; i++)
{
println(_data - buffer);
println(flashStart - buffer);
println(".");
buffer = _saveRestores[i]->restore(buffer);
}
@ -67,7 +74,7 @@ void Memory::readMemory()
println(_tableObjCount);
for (int i = 0; i < _tableObjCount; i++)
{
println(_data - buffer);
println(flashStart - buffer);
println(".");
buffer = _tableObjects[i]->restore(buffer);
uint16_t memorySize = 0;
@ -84,29 +91,37 @@ void Memory::readMemory()
void Memory::writeMemory()
{
uint8_t* buffer = _data;
buffer = pushWord(_deviceObject.manufacturerId(), buffer);
buffer = pushByteArray(_deviceObject.hardwareType(), LEN_HARDWARE_TYPE, buffer);
buffer = pushWord(_deviceObject.version(), buffer);
// first get the necessary size of the writeBuffer
size_t writeBufferSize = _metadataSize;
for (int i = 0; i < _saveCount; i++)
writeBufferSize = MAX(writeBufferSize, _saveRestores[i]->saveSize());
for (int i = 0; i < _tableObjCount; i++)
writeBufferSize = MAX(writeBufferSize, _tableObjects[i]->saveSize() + 2 /*for memory pos*/);
uint8_t buffer[writeBufferSize];
uint32_t flashPos = 0;
uint8_t* bufferPos = buffer;
bufferPos = pushWord(_deviceObject.manufacturerId(), bufferPos);
bufferPos = pushByteArray(_deviceObject.hardwareType(), LEN_HARDWARE_TYPE, bufferPos);
bufferPos = pushWord(_deviceObject.version(), bufferPos);
flashPos = _platform.writeNonVolatileMemory(flashPos, buffer, bufferPos - buffer);
print("save saveRestores ");
println(_saveCount);
for (int i = 0; i < _saveCount; i++)
{
println(_data - buffer);
println(".");
//println((long)_saveRestores[i], HEX);
buffer = _saveRestores[i]->save(buffer);
bufferPos = _saveRestores[i]->save(buffer);
flashPos = _platform.writeNonVolatileMemory(flashPos, buffer, bufferPos - buffer);
}
print("save tableobjs ");
println(_tableObjCount);
for (int i = 0; i < _tableObjCount; i++)
{
println(_data - buffer);
println(".");
//println((long)_tableObjects[i], HEX);
buffer = _tableObjects[i]->save(buffer);
bufferPos = _tableObjects[i]->save(buffer);
//save to size of the memoryblock for tableobject too, so that we can rebuild the usedList and freeList
if (_tableObjects[i]->_data != nullptr)
@ -115,17 +130,23 @@ void Memory::writeMemory()
MemoryBlock* block = findBlockInList(_usedList, _tableObjects[i]->_data);
if (block == nullptr)
{
println("_data of TableObject not in errorlist");
println("_data of TableObject not in _usedList");
_platform.fatalError();
}
buffer = pushWord(block->size, buffer);
bufferPos = pushWord(block->size, bufferPos);
}
else
buffer = pushWord(0, buffer);
bufferPos = pushWord(0, bufferPos);
flashPos = _platform.writeNonVolatileMemory(flashPos, buffer, bufferPos - buffer);
}
_platform.commitToEeprom();
printHex("SAVED ", _data, _metadataSize);
_platform.commitNonVolatileMemory();
}
void Memory::saveMemory()
{
_platform.commitNonVolatileMemory();
}
void Memory::addSaveRestore(SaveRestore* obj)
@ -151,7 +172,7 @@ void Memory::addSaveRestore(TableObject* obj)
uint8_t* Memory::allocMemory(size_t size)
{
// always allocate aligned to 32 bit
// always allocate aligned to pagesize
size = alignToPageSize(size);
MemoryBlock* freeBlock = _freeList;
@ -220,19 +241,19 @@ void Memory::freeMemory(uint8_t* ptr)
void Memory::writeMemory(uint32_t relativeAddress, size_t size, uint8_t* data)
{
memcpy(toAbsolute(relativeAddress), data, size);
_platform.writeNonVolatileMemory(relativeAddress, data, size);
}
uint8_t* Memory::toAbsolute(uint32_t relativeAddress)
{
return _data + (ptrdiff_t)relativeAddress;
return _platform.getNonVolatileMemoryStart() + (ptrdiff_t)relativeAddress;
}
uint32_t Memory::toRelative(uint8_t* absoluteAddress)
{
return absoluteAddress - _data;
return absoluteAddress - _platform.getNonVolatileMemoryStart();
}
MemoryBlock* Memory::removeFromList(MemoryBlock* head, MemoryBlock* item)
@ -354,8 +375,9 @@ void Memory::addToFreeList(MemoryBlock* block)
uint16_t Memory::alignToPageSize(size_t size)
{
// to 32 bit for now
return (size + 3) & ~0x3;
size_t pageSize = 4; //_platform.flashPageSize(); // align to 32bit for now, as aligning to flash-page-size causes side effects in programming
// pagesize should be a multiply of two
return (size + pageSize - 1) & (-1*pageSize);
}
MemoryBlock* Memory::findBlockInList(MemoryBlock* head, uint8_t* address)

View File

@ -28,8 +28,10 @@ class Memory
{
public:
Memory(Platform& platform, DeviceObject& deviceObject);
virtual ~Memory();
void readMemory();
void writeMemory();
void saveMemory();
void addSaveRestore(SaveRestore* obj);
void addSaveRestore(TableObject* obj);
@ -49,13 +51,17 @@ public:
MemoryBlock* findBlockInList(MemoryBlock* head, uint8_t* address);
void addNewUsedBlock(uint8_t* address, size_t size);
void readEraseBlockToBuffer(uint32_t blockNum);
uint8_t* eraseBlockStart(uint32_t blockNum);
uint8_t* eraseBlockEnd(uint32_t blockNum);
void saveBufferdEraseBlock();
Platform& _platform;
DeviceObject& _deviceObject;
SaveRestore* _saveRestores[MAXSAVE] = {0};
TableObject* _tableObjects[MAXTABLEOBJ] = {0};
uint8_t _saveCount = 0;
uint8_t _tableObjCount = 0;
uint8_t* _data = nullptr;
MemoryBlock* _freeList = nullptr;
MemoryBlock* _usedList = nullptr;
uint16_t _metadataSize = 4 + LEN_HARDWARE_TYPE; // accounting for 2x pushWord and pushByteArray of length LEN_HARDWARE_TYPE

View File

@ -1,12 +1,15 @@
#include "platform.h"
#include "bits.h"
#include <cstring>
#include <cstdlib>
NvMemoryType Platform::NonVolatileMemoryType()
{
return _memoryType;
}
void Platform::NonVolatileMemoryType(NvMemoryType type)
{
_memoryType = type;
@ -97,3 +100,155 @@ int Platform::readBytesMultiCast(uint8_t *buffer, uint16_t maxLen)
{
return 0;
}
size_t Platform::flashEraseBlockSize()
{
return 0;
}
size_t Platform::flashPageSize()
{
// align to 32bit as default for Eeprom Emulation plattforms
return 4;
}
uint8_t *Platform::userFlashStart()
{
return nullptr;
}
size_t Platform::userFlashSizeEraseBlocks()
{
return 0;
}
void Platform::flashErase(uint16_t eraseBlockNum)
{}
void Platform::flashWritePage(uint16_t pageNumber, uint8_t* data)
{}
uint8_t * Platform::getEepromBuffer(uint16_t size)
{
return nullptr;
}
void Platform::commitToEeprom()
{}
uint8_t* Platform::getNonVolatileMemoryStart()
{
if(_memoryType == Flash)
return userFlashStart();
else
return getEepromBuffer(KNX_FLASH_SIZE);
}
size_t Platform::getNonVolatileMemorySize()
{
if(_memoryType == Flash)
return userFlashSizeEraseBlocks() * flashEraseBlockSize() * flashPageSize();
else
return KNX_FLASH_SIZE;
}
void Platform::commitNonVolatileMemory()
{
if(_memoryType == Flash)
{
if(_bufferedEraseblockNumber > -1 && _bufferedEraseblockDirty)
{
writeBufferedEraseBlock();
free(_eraseblockBuffer);
_eraseblockBuffer = nullptr;
_bufferedEraseblockNumber = -1; // does that make sense?
}
}
else
{
commitToEeprom();
}
}
uint32_t Platform::writeNonVolatileMemory(uint32_t relativeAddress, uint8_t* buffer, size_t size)
{
if(_memoryType == Flash)
{
while (size > 0)
{
loadEraseblockContaining(relativeAddress);
uint32_t start = _bufferedEraseblockNumber * (flashEraseBlockSize() * flashPageSize());
uint32_t end = start + (flashEraseBlockSize() * flashPageSize());
ptrdiff_t offset = relativeAddress - start;
ptrdiff_t length = end - relativeAddress;
if(length > size)
length = size;
memcpy(_eraseblockBuffer + offset, buffer, length);
_bufferedEraseblockDirty = true;
relativeAddress += length;
buffer += length;
size -= length;
}
return relativeAddress;
}
else
{
memcpy(getEepromBuffer(KNX_FLASH_SIZE)+relativeAddress, buffer, size);
return relativeAddress+size;
}
}
void Platform::loadEraseblockContaining(uint32_t relativeAddress)
{
int32_t blockNum = getEraseBlockNumberOf(relativeAddress);
if (blockNum < 0)
{
println("loadEraseblockContaining could not get valid eraseblock number");
fatalError();
}
if (blockNum != _bufferedEraseblockNumber && _bufferedEraseblockNumber >= 0)
writeBufferedEraseBlock();
bufferEraseBlock(blockNum);
}
int32_t Platform::getEraseBlockNumberOf(uint32_t relativeAddress)
{
return relativeAddress / (flashEraseBlockSize() * flashPageSize());
}
void Platform::writeBufferedEraseBlock()
{
if(_bufferedEraseblockNumber > -1 && _bufferedEraseblockDirty)
{
flashErase(_bufferedEraseblockNumber);
for(int i = 0; i < flashEraseBlockSize(); i++)
{
int32_t pageNumber = _bufferedEraseblockNumber * flashEraseBlockSize() + i;
uint8_t *data = _eraseblockBuffer + flashPageSize() * i;
flashWritePage(pageNumber, data);
}
_bufferedEraseblockDirty = false;
}
}
void Platform::bufferEraseBlock(uint32_t eraseBlockNumber)
{
if(_bufferedEraseblockNumber == eraseBlockNumber)
return;
if(_eraseblockBuffer == nullptr)
{
_eraseblockBuffer = (uint8_t*)malloc(flashEraseBlockSize() * flashPageSize());
}
memcpy(_eraseblockBuffer, userFlashStart() + eraseBlockNumber * flashEraseBlockSize() * flashPageSize(), flashEraseBlockSize() * flashPageSize());
_bufferedEraseblockNumber = eraseBlockNumber;
_bufferedEraseblockDirty = false;
}

View File

@ -4,6 +4,11 @@
#include <stddef.h>
#include "save_restore.h"
#ifndef KNX_FLASH_SIZE
#define KNX_FLASH_SIZE 1024
#pragma warning "KNX_FLASH_SIZE not defined, using 1024"
#endif
enum NvMemoryType
{
Eeprom,
@ -49,21 +54,62 @@ class Platform
virtual void setupSpi();
virtual void closeSpi();
virtual int readWriteSpi(uint8_t *data, size_t len);
#if 0
// Flash memory
virtual size_t flashEraseBlockSize(); // in pages
virtual size_t flashPageSize(); // in bytes
virtual uint8_t* userFlashStart(); // start of user flash aligned to start of an erase block
virtual size_t userFlashSizeEraseBlocks(); // in eraseBlocks
virtual void flashErase(uint16_t eraseBlockNum); //relativ to userFlashStart
virtual void flashWritePage(uint16_t pageNumber, uint8_t* data); //write a single page to flash (pageNumber relative to userFashStart
#endif
virtual uint8_t* getEepromBuffer(uint16_t size) = 0;
virtual void commitToEeprom() = 0;
//Memory
// --- Overwrite these methods in the device-plattform to use the EEPROM Emulation API for UserMemory ----
//
// --- changes to the UserMemory are written directly into the address space starting at getEepromBuffer
// --- commitToEeprom must save this to a non-volatile area if neccessary
virtual uint8_t* getEepromBuffer(uint16_t size);
virtual void commitToEeprom();
// -------------------------------------------------------------------------------------------------------
virtual uint8_t* getNonVolatileMemoryStart();
virtual size_t getNonVolatileMemorySize();
virtual void commitNonVolatileMemory();
// address is relative to start of nonvolatile memory
virtual uint32_t writeNonVolatileMemory(uint32_t relativeAddress, uint8_t* buffer, size_t size);
NvMemoryType NonVolatileMemoryType();
void NonVolatileMemoryType(NvMemoryType type);
// --- Overwrite these methods in the device-plattform to use flash memory handling by the knx stack ---
// --- also set _memoryType = Flash in the device-plattform's contructor
// --- optional: overwrite writeBufferedEraseBlock() in the device-plattform to reduce overhead when flashing multiple pages
// size of one flash page in bytes
virtual size_t flashPageSize();
protected:
// size of one EraseBlock in pages
virtual size_t flashEraseBlockSize();
// start of user flash aligned to start of an erase block
virtual uint8_t* userFlashStart();
// size of the user flash in EraseBlocks
virtual size_t userFlashSizeEraseBlocks();
//relativ to userFlashStart
virtual void flashErase(uint16_t eraseBlockNum);
//write a single page to flash (pageNumber relative to userFashStart
virtual void flashWritePage(uint16_t pageNumber, uint8_t* data);
// -------------------------------------------------------------------------------------------------------
NvMemoryType _memoryType = Eeprom;
void loadEraseblockContaining(uint32_t relativeAddress);
int32_t getEraseBlockNumberOf(uint32_t relativeAddress);
// writes _eraseblockBuffer to flash
virtual void writeBufferedEraseBlock();
// copies a EraseBlock into the _eraseblockBuffer
void bufferEraseBlock(uint32_t eraseBlockNumber);
// in theory we would have to use this buffer for memory reads too,
// but because ets always restarts the device after programming it
// we can ignore this issue
uint8_t* _eraseblockBuffer = nullptr;
int32_t _bufferedEraseblockNumber = -1;
bool _bufferedEraseblockDirty = false;
};

View File

@ -82,7 +82,11 @@ bool TableObject::allocTable(uint32_t size, bool doFill, uint8_t fillByte)
return false;
if (doFill)
memset(_data, fillByte, size);
{
uint32_t addr = _memory.toRelative(_data);
for(int i = 0; i< size;i++)
_memory.writeMemory(addr+i, 1, &fillByte);
}
_size = size;
@ -139,6 +143,7 @@ void TableObject::loadEventLoading(const uint8_t* data)
case LE_START_LOADING:
break;
case LE_LOAD_COMPLETED:
_memory.saveMemory();
loadState(LS_LOADED);
break;
case LE_UNLOAD:
@ -293,7 +298,6 @@ void TableObject::initializeProperties(size_t propertiesSize, Property** propert
//TODO: missing
// 23 PID_TABLE 3 / (3)
// 27 PID_MCB_TABLE 3 / 3
uint8_t ownPropertiesCount = sizeof(ownProperties) / sizeof(Property*);

View File

@ -1,16 +1,22 @@
/*-----------------------------------------------------
Plattform for Raspberry Pi Pico and other RP2040 boards
by SirSydom <com@sirsydom.de> 2021-2022
made to work with arduino-pico - "Raspberry Pi Pico Arduino core, for all RP2040 boards"
by Earl E. Philhower III https://github.com/earlephilhower/arduino-pico V1.11.0
by SirSydom <com@sirsydom.de> 2021-2022
RTTI must be set to enabled in the board options
A maximum of 4kB emulated EEPROM is supported.
For more, use or own emulation (maybe with littlefs)
Uses direct flash reading/writing.
Size ist defined by KNX_FLASH_SIZE (default 4k) - must be a multiple of 4096.
Offset in Flash is defined by KNX_FLASH_OFFSET (default 1,5MiB / 0x180000) - must be a multiple of 4096.
EEPROM Emulation from arduino-pico core (max 4k) can be use by defining USE_RP2040_EEPROM_EMULATION
A RAM-buffered Flash can be use by defining USE_RP2040_LARGE_EEPROM_EMULATION
----------------------------------------------------*/
@ -25,6 +31,17 @@ For more, use or own emulation (maybe with littlefs)
#include <EEPROM.h> // EEPROM emulation in flash, part of Earl E Philhowers Pi Pico Arduino support
#include <pico/unique_id.h> // from Pico SDK
#include <hardware/watchdog.h> // from Pico SDK
#include <hardware/flash.h> // from Pico SDK
#define FLASHPTR ((uint8_t*)XIP_BASE + KNX_FLASH_OFFSET)
#if KNX_FLASH_SIZE%4096
#error "KNX_FLASH_SIZE must be multiple of 4096"
#endif
#if KNX_FLASH_OFFSET%4096
#error "KNX_FLASH_OFFSET must be multiple of 4096"
#endif
RP2040ArduinoPlatform::RP2040ArduinoPlatform()
@ -32,10 +49,16 @@ RP2040ArduinoPlatform::RP2040ArduinoPlatform()
: ArduinoPlatform(&Serial1)
#endif
{
#ifndef USE_RP2040_EEPROM_EMULATION
_memoryType = Flash;
#endif
}
RP2040ArduinoPlatform::RP2040ArduinoPlatform( HardwareSerial* s) : ArduinoPlatform(s)
{
#ifndef USE_RP2040_EEPROM_EMULATION
_memoryType = Flash;
#endif
}
void RP2040ArduinoPlatform::setupUart()
@ -68,6 +91,47 @@ void RP2040ArduinoPlatform::restart()
watchdog_reboot(0,0,0);
}
#ifdef USE_RP2040_EEPROM_EMULATION
#pragma warning "Using EEPROM Simulation"
#ifdef USE_RP2040_LARGE_EEPROM_EMULATION
uint8_t * RP2040ArduinoPlatform::getEepromBuffer(uint16_t size)
{
if(size%4096)
{
println("KNX_FLASH_SIZE must be a multiple of 4096");
fatalError();
}
if(!_rambuff_initialized)
{
memcpy(_rambuff, FLASHPTR, KNX_FLASH_SIZE);
_rambuff_initialized = true;
}
return _rambuff;
}
void RP2040ArduinoPlatform::commitToEeprom()
{
noInterrupts();
rp2040.idleOtherCore();
//ToDo: write block-by-block to prevent writing of untouched blocks
if(memcmp(_rambuff, FLASHPTR, KNX_FLASH_SIZE))
{
flash_range_erase (KNX_FLASH_OFFSET, KNX_FLASH_SIZE);
flash_range_program(KNX_FLASH_OFFSET, _rambuff, KNX_FLASH_SIZE);
}
rp2040.resumeOtherCore();
interrupts();
}
#else
uint8_t * RP2040ArduinoPlatform::getEepromBuffer(uint16_t size)
{
if(size > 4096)
@ -91,6 +155,73 @@ void RP2040ArduinoPlatform::commitToEeprom()
{
EEPROM.commit();
}
#endif
#else
size_t RP2040ArduinoPlatform::flashEraseBlockSize()
{
return 16; // 16 pages x 256byte/page = 4096byte
}
size_t RP2040ArduinoPlatform::flashPageSize()
{
return 256;
}
uint8_t* RP2040ArduinoPlatform::userFlashStart()
{
return (uint8_t*)XIP_BASE + KNX_FLASH_OFFSET;
}
size_t RP2040ArduinoPlatform::userFlashSizeEraseBlocks()
{
if(KNX_FLASH_SIZE <= 0)
return 0;
else
return ( (KNX_FLASH_SIZE - 1) / (flashPageSize() * flashEraseBlockSize())) + 1;
}
void RP2040ArduinoPlatform::flashErase(uint16_t eraseBlockNum)
{
noInterrupts();
rp2040.idleOtherCore();
flash_range_erase (KNX_FLASH_OFFSET + eraseBlockNum * flashPageSize() * flashEraseBlockSize(), flashPageSize() * flashEraseBlockSize());
rp2040.resumeOtherCore();
interrupts();
}
void RP2040ArduinoPlatform::flashWritePage(uint16_t pageNumber, uint8_t* data)
{
noInterrupts();
rp2040.idleOtherCore();
flash_range_program(KNX_FLASH_OFFSET + pageNumber * flashPageSize(), data, flashPageSize());
rp2040.resumeOtherCore();
interrupts();
}
void RP2040ArduinoPlatform::writeBufferedEraseBlock()
{
if(_bufferedEraseblockNumber > -1 && _bufferedEraseblockDirty)
{
noInterrupts();
rp2040.idleOtherCore();
flash_range_erase (KNX_FLASH_OFFSET + _bufferedEraseblockNumber * flashPageSize() * flashEraseBlockSize(), flashPageSize() * flashEraseBlockSize());
flash_range_program(KNX_FLASH_OFFSET + _bufferedEraseblockNumber * flashPageSize() * flashEraseBlockSize(), _eraseblockBuffer, flashPageSize() * flashEraseBlockSize());
rp2040.resumeOtherCore();
interrupts();
_bufferedEraseblockDirty = false;
}
}
#endif
#endif

View File

@ -4,6 +4,16 @@
#ifdef ARDUINO_ARCH_RP2040
#ifndef KNX_FLASH_OFFSET
#define KNX_FLASH_OFFSET 0x180000 // 1.5MiB
#pragma warning "KNX_FLASH_OFFSET not defined, using 0x180000"
#endif
#ifdef USE_RP2040_LARGE_EEPROM_EMULATION
#define USE_RP2040_EEPROM_EMULATION
#endif
class RP2040ArduinoPlatform : public ArduinoPlatform
{
public:
@ -13,11 +23,36 @@ public:
void setupUart();
// unique serial number
uint32_t uniqueSerialNumber() override;
uint32_t uniqueSerialNumber() override;
void restart();
#ifdef USE_RP2040_EEPROM_EMULATION
uint8_t* getEepromBuffer(uint16_t size);
void commitToEeprom();
#ifdef USE_RP2040_LARGE_EEPROM_EMULATION
uint8_t _rambuff[KNX_FLASH_SIZE];
bool _rambuff_initialized = false;
#endif
#else
// size of one EraseBlock in pages
virtual size_t flashEraseBlockSize();
// size of one flash page in bytes
virtual size_t flashPageSize();
// start of user flash aligned to start of an erase block
virtual uint8_t* userFlashStart();
// size of the user flash in EraseBlocks
virtual size_t userFlashSizeEraseBlocks();
//relativ to userFlashStart
virtual void flashErase(uint16_t eraseBlockNum);
//write a single page to flash (pageNumber relative to userFashStart
virtual void flashWritePage(uint16_t pageNumber, uint8_t* data);
// writes _eraseblockBuffer to flash - overrides Plattform::writeBufferedEraseBlock() for performance optimization only
void writeBufferedEraseBlock();
#endif
};
#endif