Merge pull request #319 from dzungpv/dev

Add native support for ESP32 ESP IDF with example.
This commit is contained in:
thelsing 2025-07-21 18:51:15 +02:00 committed by GitHub
commit dee55ab45e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
23 changed files with 1084 additions and 11 deletions

34
.github/workflows/esp-idf.yml vendored Normal file
View File

@ -0,0 +1,34 @@
name: ESP-IDF
on: [push, pull_request]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
build:
name: "ESP-IDF ${{ matrix.idf_ver }}"
runs-on: ubuntu-latest
timeout-minutes: 10
strategy:
fail-fast: false
matrix:
#idf_ver: ["v4.4.7", "v5.1.4", "v5.3.2"]
idf_ver: ["v5.4.1"]
idf_target: ["esp32"]
steps:
- uses: actions/checkout@v4
with:
path: ${{ github.workspace }}/app
- name: Compile
uses: espressif/esp-idf-ci-action@v1
with:
esp_idf_version: ${{ matrix.idf_ver }}
target: ${{ matrix.idf_target }}
path: app/examples/knx-demo-esp-idf
command: apt-get update && apt-get install -y python3-venv && idf.py build

View File

@ -1,6 +1,6 @@
# knx
This projects provides a knx-device stack for arduino (ESP8266, ESP32, SAMD21, RP2040, STM32), CC1310 and linux. (more are quite easy to add)
This projects provides a knx-device stack for Arduino (ESP8266, ESP32, SAMD21, RP2040, STM32), CC1310, ESP IDF and Linux. (more are quite easy to add)
It implements most of System-B specification and can be configured with ETS.
The necessary knxprod-files can be generated with the [Kaenx-Creator](https://github.com/OpenKNX/Kaenx-Creator) tool.

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
# require for knx components
add_definitions(
-Wno-unknown-pragmas
-DMASK_VERSION=0x07B0
-DKNX_NO_AUTOMATIC_GLOBAL_INSTANCE
-DKNX_FLASH_SIZE=4096
#-DKNX_NO_PRINT
#-Wno-stringop-truncation
)
project(knx-demo-diy-idf)

View File

@ -0,0 +1,29 @@
# KNX Demo DIY (ESP-IDF 5.x Native)
This is a native ESP-IDF 5.x example project for KNX, based on the Arduino `knx-demo-diy` example but using the new `Esp32IdfPlatform` for direct ESP-IDF support.
## Features
- Uses the native ESP-IDF APIs (no Arduino layer)
- Demonstrates KNX stack integration on ESP32
- Based on the logic of the Arduino `knx-demo-diy.ino` example
## How to Build
1. Install [ESP-IDF 5.x](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/)
2. Open a terminal in this directory (`examples/knx-demo-esp-idf`)
3. Run:
```sh
idf.py set-target esp32
idf.py build
idf.py -p /dev/ttyUSB0 flash monitor
```
(Replace `/dev/ttyUSB0` with your ESP32 serial port)
## Project Structure
- `main.c` — Main application file (C++ code, but named .c for ESP-IDF compatibility)
- `CMakeLists.txt` — ESP-IDF build configuration
## Notes
- This project uses the new `Esp32IdfPlatform` class for native ESP-IDF support.
- You may need to adapt pin numbers and KNX configuration for your hardware.
- The logic is adapted from the Arduino `knx-demo-diy.ino` example.

View File

@ -0,0 +1,11 @@
# Define the directory containing your source files
set(SOURCE_DIR "../../../../src")
set(SOURCE_DIR_1 "../../../../src/knx")
# Use file(GLOB) to find all .cpp files in the 'src' directory
file(GLOB SOURCE_FILES "${SOURCE_DIR}/*.cpp")
file(GLOB SOURCE_FILES_1 "${SOURCE_DIR_1}/*.cpp")
idf_component_register(SRCS ${SOURCE_FILES} ${SOURCE_FILES_1}
INCLUDE_DIRS "../../../../src" "../../../../src/knx"
REQUIRES esp_netif driver esp_timer esp_wifi freertos nvs_flash esp_system)

View File

@ -0,0 +1,12 @@
idf_component_register(
SRCS "main.cpp"
INCLUDE_DIRS "."
REQUIRES
knx
esp_timer
nvs_flash
esp_wifi
esp_event
esp_netif
mdns
)

View File

@ -0,0 +1,2 @@
dependencies:
espressif/mdns: ^1.8.2

View File

@ -0,0 +1,162 @@
#include "esp32_idf_platform.h"
#include "knx_facade.h"
#include "knx/bau07B0.h"
#include "knx/group_object.h"
#include "esp_wifi.h"
#include "nvs_flash.h"
#include "esp_log.h"
#include <esp_timer.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <cstring>
#include <stdlib.h>
#include <limits.h>
#define WIFI_SSID "your_ssid"
#define WIFI_PASS "your_password"
#define MASK_VERSION 0x07B0
static const char *TAG = "knx-demo";
// --- KNX Group Object Shortcuts ---
#define goCurrent knx.getGroupObject(1)
#define goMax knx.getGroupObject(2)
#define goMin knx.getGroupObject(3)
#define goReset knx.getGroupObject(4)
// --- Global Variables ---
float currentValue = 0;
float maxValue = 0;
float minValue = RAND_MAX;
int64_t lastsend = 0;
// --- KNX Stack Instance (migrated pattern) ---
Esp32IdfPlatform knxPlatform(UART_NUM_1); // Use UART_NUM_1, change if needed
Bau07B0 knxBau(knxPlatform);
KnxFacade<Esp32IdfPlatform, Bau07B0> knx(knxBau);
// --- WiFi event handler ---
static esp_netif_t* s_wifi_netif = nullptr;
static void wifi_event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data) {
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
esp_wifi_connect();
ESP_LOGI(TAG, "Retrying connection to the WiFi AP");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "Got IP: " IPSTR, IP2STR(&event->ip_info.ip));
if (s_wifi_netif) {
knxPlatform.setNetif(s_wifi_netif);
}
}
}
// --- Button ISR (simulate with a function call or GPIO interrupt in real use) ---
void myButtonPressed() {
static int64_t lastpressed = 0;
int64_t now = esp_timer_get_time() / 1000; // ms
if (now - lastpressed > 200) {
knx.toggleProgMode();
lastpressed = now;
}
}
// --- KNX Reset Callback ---
void resetCallback(GroupObject& go) {
if (go.value()) {
maxValue = 0;
minValue = 10000;
}
}
// --- Simulate temperature measurement ---
void measureTemp() {
int64_t now = esp_timer_get_time() / 1000; // ms
if ((now - lastsend) < 2000)
return;
lastsend = now;
int r = rand();
currentValue = (r * 1.0) / (RAND_MAX * 1.0);
currentValue *= 100 * 100;
goCurrent.value(currentValue);
if (currentValue > maxValue) {
maxValue = currentValue;
goMax.value(maxValue);
}
if (currentValue < minValue) {
minValue = currentValue;
goMin.value(minValue);
}
}
extern "C" void app_main(void) {
// Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
// Initialize TCP/IP and WiFi
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
s_wifi_netif = esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &wifi_event_handler, NULL, NULL));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &wifi_event_handler, NULL, NULL));
wifi_config_t wifi_config = {};
strcpy((char*)wifi_config.sta.ssid, WIFI_SSID);
strcpy((char*)wifi_config.sta.password, WIFI_PASS);
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config));
ESP_ERROR_CHECK(esp_wifi_start());
ESP_LOGI(TAG, "WiFi initialization finished.");
// Set UART pins (example: RX=16, TX=17)
knxPlatform.knxUartPins(16, 17);
knxPlatform.setupUart();
// Set button ISR
knx.setButtonISRFunction(myButtonPressed);
// Read KNX memory (address table, etc.)
knx.readMemory();
// Register group object callbacks and types if configured
if (knx.configured()) {
goReset.callback(resetCallback);
goReset.dataPointType(DPT_Trigger);
goCurrent.dataPointType(DPT_Value_Temp);
goMin.dataPointType(DPT_Value_Temp);
goMax.dataPointType(DPT_Value_Temp);
ESP_LOGI(TAG, "Timeout: %d", knx.paramByte(0));
ESP_LOGI(TAG, "Cyclic send: %d", knx.paramByte(1));
ESP_LOGI(TAG, "Min/Max send: %d", knx.paramByte(2));
ESP_LOGI(TAG, "Send on change: %d", knx.paramByte(3));
ESP_LOGI(TAG, "Alignment: %d", knx.paramByte(4));
}
// Start KNX stack
knx.start();
// Main loop
while (1) {
knx.loop();
if (knx.configured()) {
measureTemp();
}
vTaskDelay(pdMS_TO_TICKS(10));
}
}

View File

@ -1,3 +1,5 @@
#ifdef ARDUINO
#include "arduino_platform.h"
#include "knx/bits.h"
@ -309,3 +311,5 @@ void println(void)
ArduinoPlatform::SerialDebug->println();
}
#endif // KNX_NO_PRINT
#endif // ARDUINO

View File

@ -1,5 +1,7 @@
#pragma once
#ifdef ARDUINO
#include "knx/platform.h"
#include "Arduino.h"
@ -42,3 +44,4 @@ class ArduinoPlatform : public Platform
protected:
HardwareSerial* _knxSerial;
};
#endif // ARDUINO

436
src/esp32_idf_platform.cpp Normal file
View File

@ -0,0 +1,436 @@
#ifndef ARDUINO
#ifdef ESP_PLATFORM
// esp32_idf_platform.cpp
#include <esp_system.h>
#include <esp_mac.h>
#include "esp32_idf_platform.h"
#include "esp_log.h"
#include "knx/bits.h"
#include "nvs.h"
#include <esp_timer.h>
static const char* KTAG = "KNX_LIB";
Esp32IdfPlatform::Esp32IdfPlatform(uart_port_t uart_num)
: _uart_num(uart_num)
{
// Set the memory type to use our NVS-based EEPROM emulation
_memoryType = Eeprom;
}
Esp32IdfPlatform::~Esp32IdfPlatform()
{
if (_sock != -1)
{
closeMultiCast();
}
if (_uart_installed)
{
closeUart();
}
if (_eeprom_buffer)
{
free(_eeprom_buffer);
}
if (_nvs_handle)
{
nvs_close(_nvs_handle);
}
}
void Esp32IdfPlatform::knxUartPins(int8_t rxPin, int8_t txPin)
{
_rxPin = rxPin;
_txPin = txPin;
}
void Esp32IdfPlatform::setNetif(esp_netif_t* netif)
{
_netif = netif;
}
void Esp32IdfPlatform::fatalError()
{
ESP_LOGE(KTAG, "FATAL ERROR. System halted.");
// Loop forever to halt the system
while (1)
{
vTaskDelay(pdMS_TO_TICKS(1000));
}
}
// ESP specific uart handling with pins
void Esp32IdfPlatform::setupUart()
{
if (_uart_installed)
return;
uart_config_t uart_config;
memset(&uart_config, 0, sizeof(uart_config));
uart_config.baud_rate = 19200;
uart_config.data_bits = UART_DATA_8_BITS;
uart_config.parity = UART_PARITY_EVEN;
uart_config.stop_bits = UART_STOP_BITS_1;
uart_config.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
uart_config.source_clk = UART_SCLK_DEFAULT;
ESP_ERROR_CHECK(uart_driver_install(_uart_num, 256 * 2, 0, 0, NULL, 0));
ESP_ERROR_CHECK(uart_param_config(_uart_num, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(_uart_num, _txPin, _rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
_uart_installed = true;
}
void Esp32IdfPlatform::closeUart()
{
if (!_uart_installed)
return;
uart_driver_delete(_uart_num);
_uart_installed = false;
}
int Esp32IdfPlatform::uartAvailable()
{
if (!_uart_installed)
return 0;
size_t length = 0;
ESP_ERROR_CHECK(uart_get_buffered_data_len(_uart_num, &length));
return length;
}
size_t Esp32IdfPlatform::writeUart(const uint8_t data)
{
if (!_uart_installed)
return 0;
return uart_write_bytes(_uart_num, &data, 1);
}
size_t Esp32IdfPlatform::writeUart(const uint8_t* buffer, size_t size)
{
if (!_uart_installed)
return 0;
return uart_write_bytes(_uart_num, buffer, size);
}
int Esp32IdfPlatform::readUart()
{
if (!_uart_installed)
return -1;
uint8_t data;
if (uart_read_bytes(_uart_num, &data, 1, pdMS_TO_TICKS(20)) > 0)
{
return data;
}
return -1;
}
size_t Esp32IdfPlatform::readBytesUart(uint8_t* buffer, size_t length)
{
if (!_uart_installed)
return 0;
return uart_read_bytes(_uart_num, buffer, length, pdMS_TO_TICKS(100));
}
void Esp32IdfPlatform::flushUart()
{
if (!_uart_installed)
return;
ESP_ERROR_CHECK(uart_flush(_uart_num));
}
uint32_t Esp32IdfPlatform::currentIpAddress()
{
if (!_netif)
return 0;
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(_netif, &ip_info);
return ip_info.ip.addr;
}
uint32_t Esp32IdfPlatform::currentSubnetMask()
{
if (!_netif)
return 0;
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(_netif, &ip_info);
return ip_info.netmask.addr;
}
uint32_t Esp32IdfPlatform::currentDefaultGateway()
{
if (!_netif)
return 0;
esp_netif_ip_info_t ip_info;
esp_netif_get_ip_info(_netif, &ip_info);
return ip_info.gw.addr;
}
void Esp32IdfPlatform::macAddress(uint8_t* addr)
{
if (!_netif)
return;
esp_netif_get_mac(_netif, addr);
}
uint32_t Esp32IdfPlatform::uniqueSerialNumber()
{
uint8_t mac[6];
esp_efuse_mac_get_default(mac);
uint64_t chipid = 0;
for (int i = 0; i < 6; i++)
{
chipid |= ((uint64_t)mac[i] << (i * 8));
}
uint32_t upperId = (chipid >> 32) & 0xFFFFFFFF;
uint32_t lowerId = (chipid & 0xFFFFFFFF);
return (upperId ^ lowerId);
}
void Esp32IdfPlatform::restart()
{
ESP_LOGI(KTAG, "Restarting system...");
esp_restart();
}
void Esp32IdfPlatform::setupMultiCast(uint32_t addr, uint16_t port)
{
_multicast_addr = addr;
_multicast_port = port;
_sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (_sock < 0)
{
ESP_LOGE(KTAG, "Failed to create socket. Errno: %d", errno);
return;
}
struct sockaddr_in saddr;
memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_port = htons(port);
saddr.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(_sock, (struct sockaddr*)&saddr, sizeof(struct sockaddr_in)) < 0)
{
ESP_LOGE(KTAG, "Failed to bind socket. Errno: %d", errno);
close(_sock);
_sock = -1;
return;
}
struct ip_mreq imreq;
memset(&imreq, 0, sizeof(imreq));
imreq.imr_interface.s_addr = IPADDR_ANY;
imreq.imr_multiaddr.s_addr = addr;
if (setsockopt(_sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &imreq, sizeof(struct ip_mreq)) < 0)
{
ESP_LOGE(KTAG, "Failed to join multicast group. Errno: %d", errno);
close(_sock);
_sock = -1;
return;
}
ESP_LOGI(KTAG, "Successfully joined multicast group on port %d", port);
}
void Esp32IdfPlatform::closeMultiCast()
{
if (_sock != -1)
{
close(_sock);
_sock = -1;
}
}
bool Esp32IdfPlatform::sendBytesMultiCast(uint8_t* buffer, uint16_t len)
{
if (_sock < 0)
return false;
struct sockaddr_in dest_addr = {};
dest_addr.sin_family = AF_INET;
dest_addr.sin_port = htons(_multicast_port);
dest_addr.sin_addr.s_addr = _multicast_addr;
int sent_len = sendto(_sock, buffer, len, 0, (struct sockaddr*)&dest_addr, sizeof(dest_addr));
if (sent_len < 0)
{
ESP_LOGE(KTAG, "sendBytesMultiCast failed. Errno: %d", errno);
return false;
}
return sent_len == len;
}
int Esp32IdfPlatform::readBytesMultiCast(uint8_t* buffer, uint16_t maxLen, uint32_t& src_addr, uint16_t& src_port)
{
if (_sock < 0)
return 0;
socklen_t socklen = sizeof(_remote_addr);
int len = recvfrom(_sock, buffer, maxLen, 0, (struct sockaddr*)&_remote_addr, &socklen);
if (len <= 0)
{
return 0; // No data or error
}
src_addr = _remote_addr.sin_addr.s_addr;
src_port = ntohs(_remote_addr.sin_port);
return len;
}
bool Esp32IdfPlatform::sendBytesUniCast(uint32_t addr, uint16_t port, uint8_t* buffer, uint16_t len)
{
if (_sock < 0)
return false;
struct sockaddr_in dest_addr;
dest_addr.sin_family = AF_INET;
if (addr == 0)
{ // If address is 0, use the address from the last received packet
dest_addr.sin_addr.s_addr = _remote_addr.sin_addr.s_addr;
}
else
{
dest_addr.sin_addr.s_addr = addr;
}
if (port == 0)
{ // If port is 0, use the port from the last received packet
dest_addr.sin_port = _remote_addr.sin_port;
}
else
{
dest_addr.sin_port = htons(port);
}
if (sendto(_sock, buffer, len, 0, (struct sockaddr*)&dest_addr, sizeof(dest_addr)) < 0)
{
ESP_LOGE(KTAG, "sendBytesUniCast failed. Errno: %d", errno);
return false;
}
return true;
}
uint8_t* Esp32IdfPlatform::getEepromBuffer(uint32_t size)
{
if (_eeprom_buffer && _eeprom_size == size)
{
return _eeprom_buffer;
}
if (_eeprom_buffer)
{
free(_eeprom_buffer);
_eeprom_buffer = nullptr;
}
_eeprom_size = size;
_eeprom_buffer = (uint8_t*)malloc(size);
if (!_eeprom_buffer)
{
ESP_LOGE(KTAG, "Failed to allocate EEPROM buffer");
fatalError();
return nullptr;
}
esp_err_t err = nvs_flash_init();
if (err == ESP_ERR_NVS_NO_FREE_PAGES || err == ESP_ERR_NVS_NEW_VERSION_FOUND)
{
ESP_ERROR_CHECK(nvs_flash_erase());
err = nvs_flash_init();
}
ESP_ERROR_CHECK(err);
err = nvs_open(_nvs_namespace, NVS_READWRITE, &_nvs_handle);
if (err != ESP_OK)
{
ESP_LOGE(KTAG, "Error opening NVS handle: %s", esp_err_to_name(err));
free(_eeprom_buffer);
_eeprom_buffer = nullptr;
fatalError();
return nullptr;
}
size_t required_size = size;
err = nvs_get_blob(_nvs_handle, _nvs_key, _eeprom_buffer, &required_size);
if (err != ESP_OK || required_size != size)
{
if (err == ESP_ERR_NVS_NOT_FOUND)
{
ESP_LOGI(KTAG, "No previous EEPROM data found in NVS. Initializing fresh buffer.");
}
else
{
ESP_LOGW(KTAG, "NVS get blob failed (%s) or size mismatch. Initializing fresh buffer.", esp_err_to_name(err));
}
memset(_eeprom_buffer, 0xFF, size);
}
else
{
ESP_LOGI(KTAG, "Successfully loaded %d bytes from NVS into EEPROM buffer.", required_size);
}
return _eeprom_buffer;
}
void Esp32IdfPlatform::commitToEeprom()
{
if (!_eeprom_buffer || !_nvs_handle)
{
ESP_LOGE(KTAG, "EEPROM not initialized, cannot commit.");
return;
}
esp_err_t err = nvs_set_blob(_nvs_handle, _nvs_key, _eeprom_buffer, _eeprom_size);
if (err != ESP_OK)
{
ESP_LOGE(KTAG, "Failed to set NVS blob: %s", esp_err_to_name(err));
return;
}
err = nvs_commit(_nvs_handle);
if (err != ESP_OK)
{
ESP_LOGE(KTAG, "Failed to commit NVS: %s", esp_err_to_name(err));
}
else
{
ESP_LOGI(KTAG, "Committed %" PRIu32 " bytes to NVS.", _eeprom_size);
}
}
uint32_t millis()
{
// esp_timer_get_time() returns microseconds, so we divide by 1000 for milliseconds.
// Cast to uint32_t to match the Arduino function signature.
return (uint32_t)(esp_timer_get_time() / 1000);
}
// Internal wrapper function to bridge Arduino-style ISR to ESP-IDF
static void IRAM_ATTR isr_wrapper(void* arg)
{
IsrFuncPtr fn = (IsrFuncPtr)arg;
fn(); // call the original ISR
}
// Implement attachInterrupt arduino like in ESP IDF
void attachInterrupt(uint32_t pin, IsrFuncPtr callback, uint32_t mode)
{
gpio_config_t io_conf = {
.pin_bit_mask = (1ULL << pin),
.mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = (gpio_int_type_t)mode
};
ESP_ERROR_CHECK(gpio_config(&io_conf));
ESP_ERROR_CHECK(gpio_install_isr_service(0));
// Add ISR using the wrapper and pass original function as argument
ESP_ERROR_CHECK(gpio_isr_handler_add((gpio_num_t)pin, isr_wrapper, (void*)callback));
}
#endif // ESP_PLATFORM
#endif // !ARDUINO

87
src/esp32_idf_platform.h Normal file
View File

@ -0,0 +1,87 @@
#ifndef ARDUINO
#ifdef ESP_PLATFORM
// esp_idf_platform.h
#pragma once
#include "driver/uart.h"
#include "esp_netif.h"
#include "esp_system.h"
#include "lwip/sockets.h"
#include "nvs_flash.h"
#include "knx/platform.h"// Include the provided base class
class Esp32IdfPlatform : public Platform
{
public:
Esp32IdfPlatform(uart_port_t uart_num = UART_NUM_1);
~Esp32IdfPlatform();
// uart
void knxUartPins(int8_t rxPin, int8_t txPin);
// Call this after WiFi/Ethernet has started and received an IP.
void setNetif(esp_netif_t* netif);
// --- Overridden Virtual Functions ---
// ip stuff
uint32_t currentIpAddress() override;
uint32_t currentSubnetMask() override;
uint32_t currentDefaultGateway() override;
void macAddress(uint8_t* addr) override;
// unique serial number
uint32_t uniqueSerialNumber() override;
// basic stuff (pure virtual in base)
void restart() override;
void fatalError() override;
// multicast
void setupMultiCast(uint32_t addr, uint16_t port) override;
void closeMultiCast() override;
bool sendBytesMultiCast(uint8_t* buffer, uint16_t len) override;
int readBytesMultiCast(uint8_t* buffer, uint16_t maxLen, uint32_t& src_addr, uint16_t& src_port) override;
// unicast
bool sendBytesUniCast(uint32_t addr, uint16_t port, uint8_t* buffer, uint16_t len) override;
// UART
void setupUart() override;
void closeUart() override;
int uartAvailable() override;
size_t writeUart(const uint8_t data) override;
size_t writeUart(const uint8_t* buffer, size_t size) override;
int readUart() override;
size_t readBytesUart(uint8_t* buffer, size_t length) override;
void flushUart() override;
// Memory (EEPROM emulation via NVS)
// We override these two functions to provide the low-level storage mechanism.
// The base Platform class will use them when _memoryType is Eeprom.
uint8_t* getEepromBuffer(uint32_t size) override;
void commitToEeprom() override;
private:
// Network
esp_netif_t* _netif = nullptr;
int _sock = -1;
struct sockaddr_in _remote_addr;
uint32_t _multicast_addr = 0;
uint16_t _multicast_port = 0;
// UART
uart_port_t _uart_num;
int8_t _rxPin = -1;
int8_t _txPin = -1;
bool _uart_installed = false;
// NVS (for EEPROM emulation)
nvs_handle_t _nvs_handle;
uint8_t* _eeprom_buffer = nullptr;
uint32_t _eeprom_size = 0;
const char* _nvs_namespace = "eeprom";
const char* _nvs_key = "eeprom";
};
#endif
#endif

View File

@ -247,7 +247,7 @@ void ApplicationLayer::dataSystemBroadcastIndication(HopCountType hopType, Prior
popWord(propertyId, data + 3);
popByte(testInfo[0], data + 4);
popByte(testInfo[1], data + 5);
propertyId = (propertyId >> 4) & 0x0FFF;;
propertyId = (propertyId >> 4) & 0x0FFF;
testInfo[0] &= 0x0F;
_bau.systemNetworkParameterReadIndication(priority, hopType, secCtrl, objectType, propertyId, testInfo, sizeof(testInfo));
break;
@ -296,7 +296,7 @@ void ApplicationLayer::dataSystemBroadcastConfirm(HopCountType hopType, Priority
popWord(propertyId, data + 3);
popByte(testInfo[0], data + 4);
popByte(testInfo[1], data + 5);
propertyId = (propertyId >> 4) & 0x0FFF;;
propertyId = (propertyId >> 4) & 0x0FFF;
testInfo[0] &= 0x0F;
_bau.systemNetworkParameterReadLocalConfirm(priority, hopType, secCtrl, objectType, propertyId, testInfo, sizeof(testInfo), status);
break;

View File

@ -176,3 +176,189 @@ uint16_t crc16Dnp(uint8_t* input, uint16_t length)
return (~crc) & 0xffff;
}
// Produce Arduino print and println in ESP IDF for ESP32 family using printf().
#ifndef ARDUINO
#ifdef ESP_PLATFORM
// Helper function to print a number in binary format
static void print_binary(unsigned long long n)
{
if (n == 0)
{
printf("0");
return;
}
// Buffer for the maximum possible bits in an unsigned long long
char binary_string[65];
int i = 0;
while (n > 0)
{
binary_string[i++] = (n % 2) + '0';
n /= 2;
}
binary_string[i] = '\0';
// Reverse the string to get the correct binary representation
for (int j = 0; j < i / 2; ++j)
{
char temp = binary_string[j];
binary_string[j] = binary_string[i - j - 1];
binary_string[i - j - 1] = temp;
}
printf("%s", binary_string);
}
// --- print function implementations ---
void print(const char str[]) {
printf("%s", str);
}
void print(char c) {
printf("%c", c);
}
void print(unsigned char b, int base) {
if (base == BIN) {
print_binary(b);
} else if (base == DEC) {
printf("%u", (unsigned int)b);
} else if (base == HEX) {
printf("%x", (unsigned int)b);
} else if (base == OCT) {
printf("%o", (unsigned int)b);
}
}
void print(int n, int base) {
if (base == BIN) {
print_binary(n);
} else if (base == DEC) {
printf("%d", n);
} else if (base == HEX) {
printf("%x", n);
} else if (base == OCT) {
printf("%o", n);
}
}
void print(unsigned int n, int base) {
if (base == BIN) {
print_binary(n);
} else if (base == DEC) {
printf("%u", n);
} else if (base == HEX) {
printf("%x", n);
} else if (base == OCT) {
printf("%o", n);
}
}
void print(long n, int base) {
if (base == BIN) {
print_binary(n);
} else if (base == DEC) {
printf("%ld", n);
} else if (base == HEX) {
printf("%lx", n);
} else if (base == OCT) {
printf("%lo", n);
}
}
void print(unsigned long n, int base) {
if (base == BIN) {
print_binary(n);
} else if (base == DEC) {
printf("%lu", n);
} else if (base == HEX) {
printf("%lx", n);
} else if (base == OCT) {
printf("%lo", n);
}
}
void print(long long n, int base) {
if (base == BIN) {
print_binary(n);
} else if (base == DEC) {
printf("%lld", n);
} else if (base == HEX) {
printf("%llx", n);
} else if (base == OCT) {
printf("%llo", n);
}
}
void print(unsigned long long n, int base) {
if (base == BIN) {
print_binary(n);
} else if (base == DEC) {
printf("%llu", n);
} else if (base == HEX) {
printf("%llx", n);
} else if (base == OCT) {
printf("%llo", n);
}
}
void print(double n) {
printf("%f", n);
}
void println(void) {
printf("\n");
}
void println(const char c[]) {
print(c);
println();
}
void println(char c) {
print(c);
println();
}
void println(unsigned char b, int base) {
print(b, base);
println();
}
void println(int num, int base) {
print(num, base);
println();
}
void println(unsigned int num, int base) {
print(num, base);
println();
}
void println(long num, int base) {
print(num, base);
println();
}
void println(unsigned long num, int base) {
print(num, base);
println();
}
void println(long long num, int base) {
print(num, base);
println();
}
void println(unsigned long long num, int base) {
print(num, base);
println();
}
void println(double num) {
print(num);
println();
}
#endif // ESP_PLATFORM
#endif // !ARDUINO

View File

@ -33,6 +33,28 @@
#elif defined(ARDUINO_ARCH_ESP32)
#include <Arduino.h>
#include <esp_wifi.h>
#elif defined(ESP_PLATFORM)
#include <lwip/inet.h>
#include <driver/gpio.h>
// // Define Arduino-like macros if needed for compatibility
#define lowByte(val) ((val)&255)
#define highByte(val) (((val) >> ((sizeof(val) - 1) << 3)) & 255)
#define bitRead(val, bitno) (((val) >> (bitno)) & 1)
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
#define LOW 0
#define HIGH 1
#define CHANGE GPIO_INTR_ANYEDGE
#define FALLING GPIO_INTR_NEGEDGE
#define RISING GPIO_INTR_POSEDGE
// Implement or map Arduino-like functions if needed
uint32_t millis();
typedef void (*IsrFuncPtr)(void); // Arduino-style
typedef void (*EspIsrFuncPtr)(void*); // ESP-IDF-style
void attachInterrupt(uint32_t pin, IsrFuncPtr callback, uint32_t mode);
#else // Non-Arduino platforms
#define lowByte(val) ((val)&255)
#define highByte(val) (((val) >> ((sizeof(val) - 1) << 3)) & 255)

View File

@ -106,6 +106,10 @@ bool KNX_Decode_Value(uint8_t* payload, size_t payload_length, const Dpt& dataty
if (datatype.mainGroup == 19 && datatype.subGroup == 1 && (datatype.index <= 3 || datatype.index == 9 || datatype.index == 10))
return busValueToDateTime(payload, payload_length, datatype, value);
// DPT 20.* - HVAC Control mode Unsigned 8 Bit Integer
if (datatype.mainGroup == 20 && !datatype.index)
return busValueToUnsigned8(payload, payload_length, datatype, value);
// DPT 26.* - Scene Info
if (datatype.mainGroup == 26 && datatype.subGroup == 1 && datatype.index <= 1)
return busValueToSceneInfo(payload, payload_length, datatype, value);
@ -267,6 +271,10 @@ bool KNX_Encode_Value(const KNXValue& value, uint8_t* payload, size_t payload_le
if (datatype.mainGroup == 19 && datatype.subGroup == 1 && (datatype.index <= 3 || datatype.index == 9 || datatype.index == 10))
return valueToBusValueDateTime(value, payload, payload_length, datatype);
// DPT 20.* - HVAC Control mode Unsigned 8 Bit Integer
if (datatype.mainGroup == 20 && !datatype.index)
return valueToBusValueUnsigned8(value, payload, payload_length, datatype);
// DPT 26.* - Scene Info
if (datatype.mainGroup == 26 && datatype.subGroup == 1 && datatype.index <= 1)
return valueToBusValueSceneInfo(value, payload, payload_length, datatype);
@ -497,7 +505,8 @@ bool busValueToTime(const uint8_t* payload, size_t payload_length, const Dpt& da
if (hours > 23 || minutes > 59 || seconds > 59)
return false;
struct tm tmp = {0};
struct tm tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.tm_hour = hours;
tmp.tm_wday = weekDay;
tmp.tm_min = minutes;
@ -520,7 +529,8 @@ bool busValueToDate(const uint8_t* payload, size_t payload_length, const Dpt& da
if (year > 99 || month < 1 || month > 12 || day < 1)
return false;
struct tm tmp = {0};
struct tm tmp;
memset(&tmp, 0, sizeof(tmp));
year += year >= 90 ? 1900 : 2000;
tmp.tm_mday = day;
tmp.tm_year = year;
@ -718,7 +728,8 @@ bool busValueToDateTime(const uint8_t* payload, size_t payload_length, const Dpt
if ((hours > 24 || minutes > 59 || seconds > 59))
return false;
struct tm tmp = {0};
struct tm tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.tm_sec = seconds;
tmp.tm_min = minutes;
tmp.tm_hour = hours;

View File

@ -21,7 +21,7 @@ enum ComFlag : uint8_t
class GroupObject;
#ifndef HAS_FUNCTIONAL
#if defined(__linux__) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32) || defined (ARDUINO_ARCH_SAMD) || defined (ARDUINO_ARCH_RP2040)
#if defined(__linux__) || defined(ARDUINO_ARCH_ESP32) || defined(ESP_PLATFORM) || defined(ARDUINO_ARCH_STM32) || defined (ARDUINO_ARCH_SAMD) || defined (ARDUINO_ARCH_RP2040)
#define HAS_FUNCTIONAL 1
#else
#define HAS_FUNCTIONAL 0

View File

@ -122,7 +122,7 @@ void InterfaceObject::command(PropertyID id, uint8_t* data, uint8_t length, uint
if (prop == nullptr)
{
resultLength = 0;
return;;
return;
}
prop->command(data, length, resultData, resultLength);
@ -135,7 +135,7 @@ void InterfaceObject::state(PropertyID id, uint8_t* data, uint8_t length, uint8_
if (prop == nullptr)
{
resultLength = 0;
return;;
return;
}
prop->state(data, length, resultData, resultLength);

View File

@ -601,7 +601,8 @@ struct tm KNXValue::timeValue() const
}
}
struct tm tmp = {0};
struct tm tmp;
memset(&tmp, 0, sizeof(tmp));
return tmp;
}

View File

@ -95,6 +95,18 @@ IRAM_ATTR void buttonEvent()
#error "Mask version not supported on ARDUINO_ARCH_ESP32"
#endif
#elif defined(ESP_PLATFORM)
// predefined global instance for TP or IP or TP/IP coupler
#if MASK_VERSION == 0x07B0
KnxFacade<Esp32IdfPlatform, Bau07B0> knx(buttonEvent);
#elif MASK_VERSION == 0x57B0
KnxFacade<Esp32IdfPlatform, Bau57B0> knx(buttonEvent);
#elif MASK_VERSION == 0x091A
KnxFacade<Esp32IdfPlatform, Bau091A> knx(buttonEvent);
#else
#error "Mask version not supported on ESP_IDF_ESP32"
#endif
#elif defined(ARDUINO_ARCH_STM32)
#if MASK_VERSION == 0x07B0
KnxFacade<Stm32Platform, Bau07B0> knx(buttonEvent);

View File

@ -32,6 +32,11 @@
#ifndef KNX_NO_AUTOMATIC_GLOBAL_INSTANCE
void buttonUp();
#endif
#elif defined(ESP_PLATFORM)
#include "esp32_idf_platform.h"
#ifndef KNX_NO_AUTOMATIC_GLOBAL_INSTANCE
void buttonUp();
#endif
#elif defined(ARDUINO_ARCH_STM32)
#include "stm32_platform.h"
#ifndef KNX_NO_AUTOMATIC_GLOBAL_INSTANCE
@ -260,13 +265,27 @@ template <class P, class B> class KnxFacade : private SaveRestore
void start()
{
if (_ledPin >= 0)
{
#if defined(ESP_PLATFORM)
gpio_reset_pin((gpio_num_t)ledPin());
gpio_set_direction((gpio_num_t)ledPin(), GPIO_MODE_OUTPUT);
#else
pinMode(_ledPin, OUTPUT);
#endif // ESP_PLATFORM
}
progLedOff();
if(_buttonPin >= 0)
{
#if defined(ESP_PLATFORM)
if (_progButtonISRFuncPtr)
{
attachInterrupt(_buttonPin, _progButtonISRFuncPtr, CHANGE);
}
#else
pinMode(_buttonPin, INPUT_PULLUP);
if (_progButtonISRFuncPtr)
@ -276,8 +295,9 @@ template <class P, class B> class KnxFacade : private SaveRestore
attachInterrupt(_buttonPin, _progButtonISRFuncPtr, (PinStatus)CHANGE);
#else
attachInterrupt(_buttonPin, _progButtonISRFuncPtr, CHANGE);
#endif
#endif // ARDUINO_API_VERSION
}
#endif // ESP_PLATFORM
}
enabled(true);
@ -456,7 +476,13 @@ template <class P, class B> class KnxFacade : private SaveRestore
void progLedOn()
{
if (_ledPin >= 0)
{
#if defined(ESP_PLATFORM)
gpio_set_level((gpio_num_t)ledPin(), _ledPinActiveOn);
#else
digitalWrite(_ledPin, _ledPinActiveOn);
#endif // ESP_PLATFORM
}
if (_progLedOffCallback != 0)
_progLedOnCallback();
@ -465,7 +491,13 @@ template <class P, class B> class KnxFacade : private SaveRestore
void progLedOff()
{
if (_ledPin >= 0)
{
#if defined(ESP_PLATFORM)
gpio_set_level((gpio_num_t)ledPin(), 1 - _ledPinActiveOn);
#else
digitalWrite(_ledPin, HIGH - _ledPinActiveOn);
#endif // ESP_PLATFORM
}
if (_progLedOffCallback != 0)
_progLedOffCallback();
@ -521,6 +553,17 @@ template <class P, class B> class KnxFacade : private SaveRestore
#else
#error "Mask version not supported on ARDUINO_ARCH_ESP32"
#endif
#elif defined(ESP_PLATFORM)
// predefined global instance for TP or IP or TP/IP coupler
#if MASK_VERSION == 0x07B0
extern KnxFacade<Esp32IdfPlatform, Bau07B0> knx;
#elif MASK_VERSION == 0x57B0
extern KnxFacade<Esp32IdfPlatform, Bau57B0> knx;
#elif MASK_VERSION == 0x091A
extern KnxFacade<Esp32IdfPlatform, Bau091A> knx;
#else
#error "Mask version not supported on ESP_PLATFORM"
#endif
#elif defined(ARDUINO_ARCH_STM32)
// predefined global instance for TP only
#if MASK_VERSION == 0x07B0

View File

@ -1,3 +1,4 @@
#ifdef ARDUINO
#pragma once
#include "arduino_platform.h"
@ -153,3 +154,4 @@ class RP2040ArduinoPlatform : public ArduinoPlatform
};
#endif
#endif // ARDUINO

View File

@ -1,3 +1,4 @@
#ifdef ARDUINO
#include "arduino_platform.h"
#include "Arduino.h"
@ -53,3 +54,4 @@ class SamdPlatform : public ArduinoPlatform
};
#endif
#endif // ARDUINO