/* tests/test_virtual_functions.cpp -- overriding virtual functions from Python Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include <pybind11/functional.h> #include <thread> /* This is an example class that we'll want to be able to extend from Python */ class ExampleVirt { public: ExampleVirt(int state) : state(state) { print_created(this, state); } ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); } ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; } virtual ~ExampleVirt() { print_destroyed(this); } virtual int run(int value) { py::print("Original implementation of " "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2())); return state + value; } virtual bool run_bool() = 0; virtual void pure_virtual() = 0; // Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a // bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so // we have to handle it specially in the trampoline class (see below). virtual const std::string &get_string1() { return str1; } virtual const std::string *get_string2() { return &str2; } private: int state; const std::string str1{"default1"}, str2{"default2"}; }; /* This is a wrapper class that must be generated */ class PyExampleVirt : public ExampleVirt { public: using ExampleVirt::ExampleVirt; /* Inherit constructors */ int run(int value) override { /* Generate wrapping code that enables native function overloading */ PYBIND11_OVERRIDE( int, /* Return type */ ExampleVirt, /* Parent class */ run, /* Name of function */ value /* Argument(s) */ ); } bool run_bool() override { PYBIND11_OVERRIDE_PURE( bool, /* Return type */ ExampleVirt, /* Parent class */ run_bool, /* Name of function */ /* This function has no arguments. The trailing comma in the previous line is needed for some compilers */ ); } void pure_virtual() override { PYBIND11_OVERRIDE_PURE( void, /* Return type */ ExampleVirt, /* Parent class */ pure_virtual, /* Name of function */ /* This function has no arguments. The trailing comma in the previous line is needed for some compilers */ ); } // We can return reference types for compatibility with C++ virtual interfaces that do so, but // note they have some significant limitations (see the documentation). const std::string &get_string1() override { PYBIND11_OVERRIDE( const std::string &, /* Return type */ ExampleVirt, /* Parent class */ get_string1, /* Name of function */ /* (no arguments) */ ); } const std::string *get_string2() override { PYBIND11_OVERRIDE( const std::string *, /* Return type */ ExampleVirt, /* Parent class */ get_string2, /* Name of function */ /* (no arguments) */ ); } }; class NonCopyable { public: NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); } NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); } NonCopyable(const NonCopyable &) = delete; NonCopyable() = delete; void operator=(const NonCopyable &) = delete; void operator=(NonCopyable &&) = delete; std::string get_value() const { if (value) return std::to_string(*value); else return "(null)"; } ~NonCopyable() { print_destroyed(this); } private: std::unique_ptr<int> value; }; // This is like the above, but is both copy and movable. In effect this means it should get moved // when it is not referenced elsewhere, but copied if it is still referenced. class Movable { public: Movable(int a, int b) : value{a+b} { print_created(this, a, b); } Movable(const Movable &m) { value = m.value; print_copy_created(this); } Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); } std::string get_value() const { return std::to_string(value); } ~Movable() { print_destroyed(this); } private: int value; }; class NCVirt { public: virtual ~NCVirt() = default; NCVirt() = default; NCVirt(const NCVirt&) = delete; virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); } virtual Movable get_movable(int a, int b) = 0; std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); } std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); } }; class NCVirtTrampoline : public NCVirt { #if !defined(__INTEL_COMPILER) && !defined(__CUDACC__) && !defined(__PGIC__) NonCopyable get_noncopyable(int a, int b) override { PYBIND11_OVERRIDE(NonCopyable, NCVirt, get_noncopyable, a, b); } #endif Movable get_movable(int a, int b) override { PYBIND11_OVERRIDE_PURE(Movable, NCVirt, get_movable, a, b); } }; struct Base { /* for some reason MSVC2015 can't compile this if the function is pure virtual */ virtual std::string dispatch() const { return {}; }; virtual ~Base() = default; Base() = default; Base(const Base&) = delete; }; struct DispatchIssue : Base { std::string dispatch() const override { PYBIND11_OVERRIDE_PURE(std::string, Base, dispatch, /* no arguments */); } }; static void test_gil() { { py::gil_scoped_acquire lock; py::print("1st lock acquired"); } { py::gil_scoped_acquire lock; py::print("2nd lock acquired"); } } static void test_gil_from_thread() { py::gil_scoped_release release; std::thread t(test_gil); t.join(); } // Forward declaration (so that we can put the main tests here; the inherited virtual approaches are // rather long). void initialize_inherited_virtuals(py::module_ &m); TEST_SUBMODULE(virtual_functions, m) { // test_override py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt") .def(py::init<int>()) /* Reference original class in function definitions */ .def("run", &ExampleVirt::run) .def("run_bool", &ExampleVirt::run_bool) .def("pure_virtual", &ExampleVirt::pure_virtual); py::class_<NonCopyable>(m, "NonCopyable") .def(py::init<int, int>()); py::class_<Movable>(m, "Movable") .def(py::init<int, int>()); // test_move_support #if !defined(__INTEL_COMPILER) && !defined(__CUDACC__) && !defined(__PGIC__) py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt") .def(py::init<>()) .def("get_noncopyable", &NCVirt::get_noncopyable) .def("get_movable", &NCVirt::get_movable) .def("print_nc", &NCVirt::print_nc) .def("print_movable", &NCVirt::print_movable); #endif m.def("runExampleVirt", [](ExampleVirt *ex, int value) { return ex->run(value); }); m.def("runExampleVirtBool", [](ExampleVirt* ex) { return ex->run_bool(); }); m.def("runExampleVirtVirtual", [](ExampleVirt *ex) { ex->pure_virtual(); }); m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>); initialize_inherited_virtuals(m); // test_alias_delay_initialization1 // don't invoke Python dispatch classes by default when instantiating C++ classes // that were not extended on the Python side struct A { A() = default; A(const A&) = delete; virtual ~A() = default; virtual void f() { py::print("A.f()"); } }; struct PyA : A { PyA() { py::print("PyA.PyA()"); } PyA(const PyA&) = delete; ~PyA() override { py::print("PyA.~PyA()"); } void f() override { py::print("PyA.f()"); // This convolution just gives a `void`, but tests that PYBIND11_TYPE() works to protect // a type containing a , PYBIND11_OVERRIDE(PYBIND11_TYPE(typename std::enable_if<true, void>::type), A, f); } }; py::class_<A, PyA>(m, "A") .def(py::init<>()) .def("f", &A::f); m.def("call_f", [](A *a) { a->f(); }); // test_alias_delay_initialization2 // ... unless we explicitly request it, as in this example: struct A2 { A2() = default; A2(const A2&) = delete; virtual ~A2() = default; virtual void f() { py::print("A2.f()"); } }; struct PyA2 : A2 { PyA2() { py::print("PyA2.PyA2()"); } PyA2(const PyA2&) = delete; ~PyA2() override { py::print("PyA2.~PyA2()"); } void f() override { py::print("PyA2.f()"); PYBIND11_OVERRIDE(void, A2, f); } }; py::class_<A2, PyA2>(m, "A2") .def(py::init_alias<>()) .def(py::init([](int) { return new PyA2(); })) .def("f", &A2::f); m.def("call_f", [](A2 *a2) { a2->f(); }); // test_dispatch_issue // #159: virtual function dispatch has problems with similar-named functions py::class_<Base, DispatchIssue>(m, "DispatchIssue") .def(py::init<>()) .def("dispatch", &Base::dispatch); m.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); }); // test_override_ref // #392/397: overriding reference-returning functions class OverrideTest { public: struct A { std::string value = "hi"; }; std::string v; A a; explicit OverrideTest(const std::string &v) : v{v} {} OverrideTest() = default; OverrideTest(const OverrideTest&) = delete; virtual std::string str_value() { return v; } virtual std::string &str_ref() { return v; } virtual A A_value() { return a; } virtual A &A_ref() { return a; } virtual ~OverrideTest() = default; }; class PyOverrideTest : public OverrideTest { public: using OverrideTest::OverrideTest; std::string str_value() override { PYBIND11_OVERRIDE(std::string, OverrideTest, str_value); } // Not allowed (uncommenting should hit a static_assert failure): we can't get a reference // to a python numeric value, since we only copy values in the numeric type caster: // std::string &str_ref() override { PYBIND11_OVERRIDE(std::string &, OverrideTest, str_ref); } // But we can work around it like this: private: std::string _tmp; std::string str_ref_helper() { PYBIND11_OVERRIDE(std::string, OverrideTest, str_ref); } public: std::string &str_ref() override { return _tmp = str_ref_helper(); } A A_value() override { PYBIND11_OVERRIDE(A, OverrideTest, A_value); } A &A_ref() override { PYBIND11_OVERRIDE(A &, OverrideTest, A_ref); } }; py::class_<OverrideTest::A>(m, "OverrideTest_A") .def_readwrite("value", &OverrideTest::A::value); py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest") .def(py::init<const std::string &>()) .def("str_value", &OverrideTest::str_value) // .def("str_ref", &OverrideTest::str_ref) .def("A_value", &OverrideTest::A_value) .def("A_ref", &OverrideTest::A_ref); } // Inheriting virtual methods. We do two versions here: the repeat-everything version and the // templated trampoline versions mentioned in docs/advanced.rst. // // These base classes are exactly the same, but we technically need distinct // classes for this example code because we need to be able to bind them // properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to // multiple python classes). class A_Repeat { #define A_METHODS \ public: \ virtual int unlucky_number() = 0; \ virtual std::string say_something(unsigned times) { \ std::string s = ""; \ for (unsigned i = 0; i < times; ++i) \ s += "hi"; \ return s; \ } \ std::string say_everything() { \ return say_something(1) + " " + std::to_string(unlucky_number()); \ } A_METHODS A_Repeat() = default; A_Repeat(const A_Repeat&) = delete; virtual ~A_Repeat() = default; }; class B_Repeat : public A_Repeat { #define B_METHODS \ public: \ int unlucky_number() override { return 13; } \ std::string say_something(unsigned times) override { \ return "B says hi " + std::to_string(times) + " times"; \ } \ virtual double lucky_number() { return 7.0; } B_METHODS }; class C_Repeat : public B_Repeat { #define C_METHODS \ public: \ int unlucky_number() override { return 4444; } \ double lucky_number() override { return 888; } C_METHODS }; class D_Repeat : public C_Repeat { #define D_METHODS // Nothing overridden. D_METHODS }; // Base classes for templated inheritance trampolines. Identical to the repeat-everything version: class A_Tpl { A_METHODS; A_Tpl() = default; A_Tpl(const A_Tpl&) = delete; virtual ~A_Tpl() = default; }; class B_Tpl : public A_Tpl { B_METHODS }; class C_Tpl : public B_Tpl { C_METHODS }; class D_Tpl : public C_Tpl { D_METHODS }; // Inheritance approach 1: each trampoline gets every virtual method (11 in total) class PyA_Repeat : public A_Repeat { public: using A_Repeat::A_Repeat; int unlucky_number() override { PYBIND11_OVERRIDE_PURE(int, A_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, A_Repeat, say_something, times); } }; class PyB_Repeat : public B_Repeat { public: using B_Repeat::B_Repeat; int unlucky_number() override { PYBIND11_OVERRIDE(int, B_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, B_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERRIDE(double, B_Repeat, lucky_number, ); } }; class PyC_Repeat : public C_Repeat { public: using C_Repeat::C_Repeat; int unlucky_number() override { PYBIND11_OVERRIDE(int, C_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, C_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERRIDE(double, C_Repeat, lucky_number, ); } }; class PyD_Repeat : public D_Repeat { public: using D_Repeat::D_Repeat; int unlucky_number() override { PYBIND11_OVERRIDE(int, D_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, D_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERRIDE(double, D_Repeat, lucky_number, ); } }; // Inheritance approach 2: templated trampoline classes. // // Advantages: // - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for // any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11 // methods (repeat). // - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can // properly inherit constructors. // // Disadvantage: // - the compiler must still generate and compile 14 different methods (more, even, than the 11 // required for the repeat approach) instead of the 6 required for MI. (If there was no pure // method (or no pure method override), the number would drop down to the same 11 as the repeat // approach). template <class Base = A_Tpl> class PyA_Tpl : public Base { public: using Base::Base; // Inherit constructors int unlucky_number() override { PYBIND11_OVERRIDE_PURE(int, Base, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, Base, say_something, times); } }; template <class Base = B_Tpl> class PyB_Tpl : public PyA_Tpl<Base> { public: using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors) int unlucky_number() override { PYBIND11_OVERRIDE(int, Base, unlucky_number, ); } double lucky_number() override { PYBIND11_OVERRIDE(double, Base, lucky_number, ); } }; // Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can // use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead): /* template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> { public: using PyB_Tpl<Base>::PyB_Tpl; }; template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> { public: using PyC_Tpl<Base>::PyC_Tpl; }; */ void initialize_inherited_virtuals(py::module_ &m) { // test_inherited_virtuals // Method 1: repeat py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat") .def(py::init<>()) .def("unlucky_number", &A_Repeat::unlucky_number) .def("say_something", &A_Repeat::say_something) .def("say_everything", &A_Repeat::say_everything); py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat") .def(py::init<>()) .def("lucky_number", &B_Repeat::lucky_number); py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat") .def(py::init<>()); py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat") .def(py::init<>()); // test_ // Method 2: Templated trampolines py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl") .def(py::init<>()) .def("unlucky_number", &A_Tpl::unlucky_number) .def("say_something", &A_Tpl::say_something) .def("say_everything", &A_Tpl::say_everything); py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl") .def(py::init<>()) .def("lucky_number", &B_Tpl::lucky_number); py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl") .def(py::init<>()); py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl") .def(py::init<>()); // Fix issue #1454 (crash when acquiring/releasing GIL on another thread in Python 2.7) m.def("test_gil", &test_gil); m.def("test_gil_from_thread", &test_gil_from_thread); };